Preparation and evaluation of 99mTc-DMSA lyophilized kit for renal imaging

Syed Umer Jan1 and Hafiz Ghulam Abbass2

1Department of Pharmacy, University of Balochistan, Quetta, Pakistan
2INMOL, Near Shaikh Zayed Hospital, Lahore, Pakistan

Abstract: Dimercaptosuccinic acid (DMSA) has been evaluated and used with technetium 99m (99mTc) in imaging of kidneys. DMSA lyophilized kits were prepared and radiolabelled with 99mTc. Paper and thin-layer chromatography have been employed using various eluent systems for the radiochemical analysis, percentage labeling and binding capacity of 99mTc-DMSA. Female albino rabbits were used for this study. Biological data obtained after intravenous injection of radiolabelled DMSA to female albino rabbits revealed 32.42% uptake and long retention time in the kidneys. On the basis of animal biodistribution data, it is suggested that DMSA when labeled with 99mTc is useful complex for renal imaging and can be successfully applied as a diagnostic tool in nuclear medicine. Clinical biodistribution and radiation dosimetry studies are planned in future.

Keywords: 99mTc-DMSA, renal imaging, lyophilized kit, radiolabeling.

INTRODUCTION

To visualize any sort of abnormalities in the kidneys and any other organs of the body, different techniques are used. All radiological examinations begin with a plain radiograph before any contrast medium is injected and it is often very informative by itself in urinary surgery (Blendy, 1982). The intravenous urography is an imaging study of urinary tract morphology and not of renal function. This is achieved by the rapid intravenous administration of urografin or conray, a family of compounds based on benzoic acid attached to iodine atoms. Modern contrast media gives quite useful imaging even in the presence of significant impairment of renal function (Hussain, 1984). Ultrasound is another method of visualizing the internal structures of certain organs. When the history and earlier investigation leave uncertain the etiology of acute renal failure, then a percutaneous renal biopsy is indicated (Thompson and Woodhouse, 1987). But the risk associated with transrectal biopsy is urinary infection and bacteraemia (Eaton, 1981). Ultrasound is another method of visualizing the internal structures of certain organs. When the history and earlier investigation leave uncertain the etiology of acute renal failure, then a percutaneous renal biopsy is indicated (Thompson and Woodhouse, 1987). Another method called Computed Tomography (CT Scan) is the non-invasive method of choice in the detection of supra renal tumors. It is very useful in locating retroperitoneal lesions, such as lymph node metastases, sarcomas and lymphomas, retroperitoneal fibrosis, abscess, urinoma, a non-functioning ectopic kidney or even abdominally retained undescended testis (Lee et al., 1980). Wilms tumour (WT) with imaging is another useful and non invasive method in Europe (Smets and de Kraker, 2010; Brisse et al., 2008). From the last two decades, imaging, a non-invasive technique has become very popular in the diagnosis of different abnormalities. Renal cell carcinoma (RCC) is the most common renal tumour in adults. It presents very rarely in childhood (1%) (Sausville et al., 2009). Gamma camera scanning is the only non-invasive method of obtaining information regarding both, the morphological structure of the upper tract system and the functioning status of the renal unit. Wide range of radio isotopes are used for this purpose. Technetium-99m (99mTc) is the most widely used radionuclide in renal imaging. Renal imaging and functional studies are recognized as reliable means to evaluate the structure and location of the anatomic components of the urinary tract as well as to determine the total and differential performance of the kidneys. This can be done without danger of the allergic reaction, unpleasant side effects or excessive radiation dose to the organ involved. Complemented by other imaging modalities, radionuclide renal imaging has emerged as an important diagnostic tool in nephrology, urology and renal transplantation (Beschi et al., 1981). Accumulation of radioactivity indicates the presence of functioning renal tissue and thus it is the technique of choice to search for ectopic renal tissue or to confirm the absence of a kidney (De Wardener, 1985). A large number of radioisotopes are available which can be used for gamma scintigraphy. In this study, 99mTc-Dimercaptosuccinic acid (99mTc-DMSA) has been used for scanning the renal tissues. 2,3-Dimercaptosuccinic acid was prepared by Owen and Sultanbawa (1949) and first used in the treatment of antimony, lead or mercury poisoning (Wang et al., 1965). In 1974, 99mTc-DMSA was introduced as a substitute for radioactive mercury containing compounds for static imaging of the kidney (Lin et al., 1974). 99mTc-DMSA has been used not only to visualize the kidneys to study renal morphology but also to assess individual kidney function. Despite its clinical use in assessing relative renal function, the mechanism by which 99mTc-DMSA is taken up by the kidneys is still not completely known. Two major probabilities are that it could enter the proximal tubular cell either by glomerular
filtration and subsequent reabsorption or by direct uptake from the peritubular capillaries. Because, 99mTc-DMSA is largely bound to serum proteins 75%, according to Arnold et al. (1975) it is assumed that glomerular filtration is insignificant and that uptake takes place at the peritubular side of the cell. DMSA uptake is significantly decreased in the obstructed kidneys and uptake may improve following relief of obstruction (Taylor et al., 1986). 99mTc-DMSA imaging appears to be useful in detecting the distribution of amyloid deposits and in determining the appropriate site for biopsy and in detecting the tenosynovial giant-cell tumor and in diagnosing recurrence of this tumor (Kobayashi et al., 1993). 99mTc-DMSA was used for the diagnosis of metastatic carcinoma of the prostate (Lamki and Shearer, 1984) and in the imaging of medullary thyroid carcinoma (Hilditch et al., 1986). DMSA imaging is useful in patients with urethral duplication (Wu et al., 1986) planar imaging (Pawana et al., 1999) and for the evaluation of pyelonephritis and scars (Rushton and Majd, 1992; Gad et al., 2004). Single photon emission computed tomography with 99mTc-DMSA (SPECT-DMSA) imaging is superior to ultrasound for the detection of renal scars and abnormalities in children with vasicoureteric reflux (Kibar et al., 2003) and renal scintigraphy in children (Françoise et al., 2003). Keeping all these points, 99mTc-DMSA has been selected for the renal imaging and for determining its rate of clearance from the renal region.

MATERIAL AND METHODS

Kit preparation and evaluation

We have prepared and evaluated the DMSA kit in our lab with the help of known literature methods. 99mTc labeled DMSA was first used by Lin (1974) and has been widely used for renal imaging. DMSA kits were prepared and evaluated by Vanlic and Gorkic (1976) and Vanlic and Petrovic (1982). Ikeda (1977) and Westera et al. (1985) reported four DMSA complexes, complex 1-4. The main differences between these complexes were change of pH and quantity of stannous chloride (SnCl$_2$). See Table 1.

Table 1: Four reported DMSA complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>Description</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex 1</td>
<td>DMSA+ SnCl$_2$(less quantity) + 99mTcO$_4$</td>
<td>2.5</td>
</tr>
<tr>
<td>Complex 2</td>
<td>DMSA+ SnCl$_2$(excess quantity) + 99mTcO$_4$</td>
<td>2.5</td>
</tr>
<tr>
<td>Complex 3</td>
<td>Complex 1 with pH 9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Complex 4</td>
<td>Complex 2 with pH 9.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Among these complexes, the complex 2 showed highest kidney uptake. Formation of complex 2 from complex 1 greatly depends on 99mTc-concentrations and SnCl$_2$ 2H$_2$O ratio. Change in pH is responsible for the formation of other complexes. Washburn et al (1995) produced a pentavalent Tc-DMSA kit for medullary thyroid carcinoma and other tumors. We had investigated various ratios of DMSA and stannous chloride at variable pH values.

Medical experiments

Female albino rabbits were used for this study. The rabbits were taken from the well established and maintained animal house of INMOL and the kit was prepared in the Radiopharmaceutical laboratory of INMOL. The studies were carried out under gamma camera in the Hospital (INMOL).

Radiolabeling of kits

Radiolabeling of kits was simply done by reconstituting the kits with 2mL of 99mTcO$_4$ elute and incubating the kits for 10 minutes.

Evaluation of kits

Billinghurst (1973) developed good elect systems for paper and thin-layer chromatography for the analysis of radiopharmaceuticals. Several eluent systems have been developed for chromatographic analysis of 99mTc-DMSA by different researchers (Vanlic et al., 1982; Westera et al., 1985) (table 2).

Table 2: Various solvent systems used for analysis of 99mTc-DMSA kits

<table>
<thead>
<tr>
<th>S. No</th>
<th>Mobile Phase Composition</th>
<th>Method</th>
<th>R_f Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Acetone</td>
<td>PC/TLC</td>
<td>A = 0.0, B = 1.0</td>
</tr>
<tr>
<td>02</td>
<td>Methanol: Water (85:15 v/v)</td>
<td>P/TLC</td>
<td>A = 0.0, B = 0.9</td>
</tr>
<tr>
<td>03</td>
<td>Dioxane: Water (9:1 v/v)</td>
<td>TLC</td>
<td>A = 0.0, B = 1.0</td>
</tr>
<tr>
<td>04</td>
<td>Ethanol: Water (8:2 v/v)</td>
<td>TLC</td>
<td>A = 0.0, B = 0.9</td>
</tr>
<tr>
<td>05</td>
<td>n-Butanol: Acetic acid: Water (3:2:3 v/v)</td>
<td>TLC</td>
<td>A = 0.0, B = 0.8</td>
</tr>
<tr>
<td>06</td>
<td>Chloroform: Methanol: Water (80:40:3 v/v)</td>
<td>TLC</td>
<td>A = 0.0, B = 0.7</td>
</tr>
<tr>
<td>07</td>
<td>Ethanol: Water: Ammonia (96:16:1 6 v/v)</td>
<td>TLC</td>
<td>A = 0.0, B = 0.8</td>
</tr>
<tr>
<td>08</td>
<td>Physiological saline</td>
<td>TLC</td>
<td>A = 0.0, B = 0.9</td>
</tr>
</tbody>
</table>

A= 99mTc-DMSA Complex, B= Free pertechnetate (99mTcO$_4$)

RESULTS

Kit preparation and radiolabeling

The 99mTc-DMSA Complex was prepared and evaluated...
according to the methods of Billinghurst (1973) by paper
and thin-layer chromatography. It was found that 99mTc-
DMSA did not move along the solvent front and remained
at the origin. 96 to 98% labeling of the 99mTc-DMSA was
observed (table 3).

**Table 3: Percent count in various solvent systems used for
analysis of 99mTc-DMSA kits**

<table>
<thead>
<tr>
<th>S. No</th>
<th>Mobile Phase</th>
<th>% Count of 99mTc-DMSA (Complex)</th>
<th>% Count of Free pertechnetate (99mTcO$_4^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Acetone</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>02</td>
<td>Methanol : Water</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>Dioxane : Water</td>
<td>97</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>Ethanol : Water</td>
<td>97</td>
<td>3</td>
</tr>
<tr>
<td>05</td>
<td>n-Butanol : Acetic acid : Water</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>06</td>
<td>Chloroform : Methanol : Water</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>07</td>
<td>Ethanol : Water : Ammonia</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>08</td>
<td>Physiological saline</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>

Physical studies

Effect of pH on Labeling Efficiency

Maximum stability and labeling yield was obtained at pH 3-4.

Chemical studies

Paper Chromatography

Fig. 1 shows the determination of free pertechnetate in 99mTc-DMSA complex using Whatman No.1 paper in
Acetone and 85% Methanol solvent system. 99mTc-DMSA
remained stable in both cases ($R_f = 0$), whereas free
pertechnetate migrated close to the solvent front ($R_f = 1.0$
and 0.9 respectively).

Thin-layer chromatography

Eight various solvents were used for assessing the
stability of the 99mTc-DMSA complex on thin-layer of
silica gel. 99mTc-DMSA complex was found at the origin
($R_f = 0$) in all solvent systems, whereas the free
pertechnetate migrated close to the solvent front (fig. 2).
Moreover, it was found that TLC of 99mTc-DMSA with the
above solvent systems indicated that technetium was
quantitatively reduced by the use of lower concentration
of SnCl$_2$, so the final product did not contain free
pertechnetate.

![Fig 1: PC/TLC of Tc-DMSA on Whatman No.1 Paper/TLC plate in Acetone & aq. Methanol.](image)

![Fig 2: TLC of Tc-DMSA on TLC plate in various solvent systems.](image)

Stability studies

Stability of the 99mTc-DMSA depends largely on the
temperature. Stability of the complex decreased as the
temperature was raised. Although a slight decrease of
99mTc-DMSA was observed after 4 hours, the kit was
stable for 24 hours when stored at a room temperature
below 30°C. The shelf life extended to 7 months when
stored at 25°C (fig. 3).

![Fig 3: Stability of Tc-DMSA Kits stored at various
temperatures.](image)

Effect of concentration

The optimum concentration of the final solution used for
the complex is 0.5 mg/mL for DMSA and 0.3 mg/mL for
SnCl$_2$.2H$_2$O (each vial contained 2mL solution).

Effect of temperature

Evaluation at increased temperature resulted in
deterioration of the complex.
Preparation and evaluation of 99mTc-DMSA

Biological studies

Kidney imaging studies revealed that mean percent uptake of the injected dose of 99mTc-DMSA complex by the kidneys was 23.33±1.12% one-hour post injection. Kidney uptake of 99mTc-DMSA was slow and it was found that the kidney uptake was high, 32.42% between third and fourth hour (fig. 4).

![Fig. 4: Kidney uptake of 99mTc-DMSA.](image)

DISCUSSION

99mTc-DMSA is largely bound to serum proteins 75%, according to Arnold et al. (1975). It is assumed that glomerular filtration is insignificant and that uptake takes place at the peritubular side of the cell. DMSA uptake is significantly decreased in the obstructed kidneys and uptake may improve following relief of obstruction. Gamma scintigraphic studies revealed that the mean percent uptake of the injected dose of 99mTc-DMSA complex by the kidneys was 20.38±1.12% one-hour post injection. Kidney uptake of 99mTc-DMSA was slow and it was found that the kidney uptake was high, 32.42% between third and fourth hour (fig. 4). Some activity was picked up by the liver, but the successive scintigraphs of the kidney following injection of 99mTc-DMSA showed progressive accumulation of 99mTc in the kidneys at least up to 4 hours. This indicates that 99mTc-DMSA complex could be used clinically for the renal scintigraphy with excellent visualization. The residence of the complex prolonged to 24 hours.

Biological aspect of 99mTc-DMSA kit has already been examined (Arnold et al., 1975) but this kit was for the first time prepared locally and evaluated for the chemical behavior, relation between chemical and biological characteristics and analytical procedures for quality control of 99mTc-DMSA kit. Imaging the kidney with 99mTc-DMSA is useful for the identification of focal renal pathology.

CONCLUSION

DMSA-99mTc kit was resulted in excellent visualization in kidney imaging, and eliminated approximately completely in 24 hours. Moreover, the kit was found to be stable for 7 months and can be used effectively within this period. 99mTc-DMSA when injected to rabbits did not show any adverse effects and thus can be investigated further to be used safely in human beings with a wide safety margin. We have planned clinical bio-distribution and radiation dosimetry studies in future.

REFERENCES

