Formulation and development of frovatriptan succinate in situ gel for nasal drug delivery: In vitro and ex vivo evaluation

Mohammed Layth Hamzah* and Hanan Jalal Kassab
Department of Pharmaceutics, College of Pharmacy, University of Baghdad and Uruk University, Iraq

Abstract: Migraine is a debilitating disease that sometimes requires extensive treatment, ideally with medication that targets the brain, with minimized systemic adverse effects, preferably with a single daily medication; these properties are offered partially by the current dosage form of Frovatriptan. formulation of Frovatriptan binary ethosome into mucoadhesive nasal in situ gel to extend the drug’s residence time. The particle size was 154.1±4.38 nm of the Frovatriptan binary ethosome. In situ, gel formulas were prepared to utilize the cold technique, using 18% w/v poloxamer 407 with different concentrations of Carbopol 934 and the clarity, pH. Frovatriptan content spreadability, mucoadhesive force, in vitro diffusion via nasal mucosa and the optimal formula underwent further investigations. In-situ gel F2 (0.2% Carbopol) demonstrated the best spreadability of 12.88±0.186 cm²/min, 99% drug content mucoadhesive strength of 645.32±0.054 dynes/cm², percent release of 98.56±0.041 after 24 hours and permeability increased by around 3.68-fold compared to the pure drug and histopathologically showed favorable outcomes. Mucoadhesive Frovatriptan-binary ethosome-loaded nasal in situ gel is an effective method of treating migraines.

Keywords: Carbopol, frovatriptan, poloxamer, intra-nasal, in situ gel.

INTRODUCTION

Migraine headaches affect more than one billion individuals each year across the world. It is the second most prevalent cause of job absenteeism, second only to flu (Amiri et al., 2021). Migraine might be treated with either preventative or acute alleviative medications such as serotonin (5-HT) receptor agonists (commonly known as triptans), which primarily target the 5-HT 1B/1D receptor, which prevents the abnormal vasodilation of blood vessels, a common migraine symptom.

Seven triptans are on the market, given orally, intranasally and subcutaneously. While Frovatriptan succinate (FVT) parenteral formulation has a very high absolute bioavailability (96 percent), it causes painful administration. Nonetheless, despite its long half-life (26 h) and potency, the medication is classified as a low-efficacy triptan because of its delayed onset of action and it is formulated as film-coated tablets or fast-dissolving films (Al-anbagi et al., 2018). However, current dosage formulations have several drawbacks, including a slow onset of action, inadequate bioavailability (10-30%) because of its low solubility and degradation in the gastrointestinal tract (GIT) (Anitha et al., 2021) and undesirable side effects such as coronary vasospasm, pain, tightness in the chest and finger numbness. One of the drawbacks of film-coated tablets is that they need repeated doses to be administered orally. FVT’s inability to cross the blood-brain barrier may be because it is a hydrophilic drug (Deepika et al., 2019).

While intranasal (IN) drug delivery is an attractive option (Younis and Abd Alhammad, 2023), the challenge for the formulator is great when attempting to find a method to infiltrate the mucus lining of the nasal canal without inflicting irreversible tissue damage. The main disadvantages are small nasal cavity capacity (200 μL), mucociliary clearance and anterior leakage, which might impair the effectiveness of the nasal medication delivery system (Sherafudeen and Vasantha, 2015, Sulaiman et al., 2018, Salih and Ghareeb, 2021, Yousif and Khalil, 2009, Adnan et al., 2022). In situ gels provide several advantages over typical gels, such as being simpler to produce and longer retention in the nasal mucosa owing to gelling and mucoadhesion (Nief et al., 2019, Alabdly and Kassab, 2022).

This study developed new in situ-gel formulations of FVT for intranasal application to extend the drug’s residence time in the nasal cavity and enhance its absorption across the nasoanomucosal barrier.

MATERIALS AND METHODS

Materials
Frovatriptan succinate (CAS Number: 158930-17-7) was purchased from Pharmaffiliates (Catalogue number: PA 06 83000, India), Poloxamer 407 was purchased from Sigma-Aldrich® Solutions, Germany (CAS Number: 9003-11-6, ID: 16758), Carbopol 934 was purchased from HiMedia Laboratories LLC, USA (stock keeping unit: GRM6761) and Dialysis Membrane-135 was purchased from HiMedia Laboratories LLC, USA (stock keeping unit: LA398), phospholipon ® 90H [Phospholipids, hydrogenated, with 70% phosphatidylcholine] was purchased from Pharma Excipients ™ (CAS-No. 97281-48-6), the rest of the materials were procured from local vendors.
Formulation and development of frovatriptan succinate in situ gel for nasal drug delivery

Methods
Characterization of FVT-loaded binary ethosome dispersion formula
Assessment of particle vesicle size, polydispersity and 5-potential binary ethosome
Particle size using Zetasizer Malvern Ultra Red, Worcestershire, U.K. (Muslim and Marai, 2022); all measurements were run in triplet and the particle size was 154.1±4.38 nm, as illustrated in fig.

Formulation of in situ nasal gel of FVT
The artificial nasal fluid was synthesized by mixing potassium chloride (745 mg), calcium chloride (145 mg) and sodium chloride (2,1925 g) to a total volume of 250 ml D.W. (Mahajan et al., 2009). FVT as binary ethosome (200mg/40mL) was prepared previously (5ml used in each formulation, which contains 5mg per ml FVT); later, it was incorporated into In situ nasal gels by mixing Poloxamer 407 (18% w/v) with a cold method (Kempwade and Taranalli, 2014), the in situ gel was hydrated overnight at (4-8°C). Binary ethosome dispersion of FVT was mixed with different concentrations of Carbopol 934 with a preservative (table 1) and this dispersion was added to the poloxamer dispersion.

Evaluation of in-situ gel
Several evaluation steps, including the particle size, clarity, pH, FVT content homogeneity, spreadability, in vitro diffusion via nasal mucosa, gel strength, stability study, mucoadhesive force, histopathology investigation, ex vivo permeation research, were performed to assess the investigated formulations (Rajput and Butani, 2019, Silva et al., 2018).

Visual Appearance and Clarity (refractive index)
Measurement
The naked eye inspected the prepared formulas. Using an Abbes refractometer (Heathrow Scientific, USA), it was possible to assess the clarity of sols or formulations regarding their refractive indexes before gelling. Calibration was done using D.W. as a standard for the refractometer (Galgate et al., 2014b). The telescope’s cross wire was accurately positioned on the boundary separating bright and dark areas by modifying the refractometer scale (Gupta and Sharma, 2009). Repeating the process for each formulation F1 through F6 allowed for comparing results to the refractive index of water (1.33) (Galgate et al., 2014b).

pH measurement
The electronic pH meter was calibrated using 4 and 7 pH buffer solutions (Equip-Tronics EQ-610, India). The glass electrodes were dipped into each formula collected in a beaker. Following that, the pH of the solution was checked three times (Nisha et al., 2012).

Spreadability
A slip-and-drag method was used to measure spreadability. A precise quantity of FVT in situ gel was carefully measured and put onto a transparent glass plate. A second transparent slide was positioned above the gel-coated slide affixed to a wooden block. To ensure uniform distribution of the gel, a weight of 100 grams was positioned on the upper slide for a while, causing the gel to spread evenly between the slides without leaving any residue on the sides. The weight was removed and placed on the wooden block (Swati et al., 2017). The duration required for the upper plate to fully detach from the bottom plate. The concept of spreadability is quantified as follows:

\[S = \frac{m \times L}{t} \]

m: upper plate mass (g), S: spreading area mm², L: glass plates length (cm), depending on mass, t: time taken to separate (s).

Drug content
The drug content of formulations was evaluated in triplicate with a double-beam ultraviolet (U.V.) visible spectrophotometer (Shimadzu UV-1800). One ml of the formula was transferred into a 10-ml volumetric flask and the remaining 9 milliliters were double-distilled water. A 1 ml sample was prepared by diluting the original solution with 10 mL of double-distilled water. As a last step, a UV-visible spectrophotometer (Gaikwad, 2010) was used to determine the absorbance of the solution after it was created.

Viscosity
The viscosity analyses used the Brookfield viscometer RVDV-IIp pro model (Brookfield Engineering Laboratories, USA). The viscosity tests used a small-volume adaptor (Mahajan et al., 2009). Prepared compositions’ apparent viscosity values were tested and set to spindle 3 and 100 rpm and the measurement temperature was taken between 32-34°C.

Mucoadhesive strength
The formulation’s mucoadhesive force and detachment stress were determined using a modified version of the mucoadhesive force measuring instrument—the experimental procedure involved utilizing a modified balance approach, employing two glass vials and sheep nasal mucosa. The vials were subjected to a temperature range of 32-34°C for 10 minutes. A vial was affixed to a single side of the balance. At the same time, a 0.5 ml quantity of gel specimen was positioned between the two mucosal membranes connected to the lower portion of the vials. The researchers measured the lowest water weight necessary to disrupt the mucosal adhesion (Gaikwad, 2010, Kumar et al., 2010).

\[\text{Mucoadhesive strength (dyne/cm²)} = \frac{M \times G}{A} \]
where \(M \) = the weight needed to separate tissues in g, \(G \) = gravity's acceleration (980 \(\text{cm/s}^2 \)) and \(A \) = mucosal exposed area.

Gelling temperature and time

It was determined using Miller and Donovan’s method. A volume of 2 mL from each formulation was extracted as an aliquot and placed into a test tube, which was subsequently immersed in a water bath. One °C systematically raised the temperature of the water bath at a time, then left it to stabilize for five minutes at each consecutive temperature increment. The specimens were examined to determine if gelation had occurred, indicated by the cessation of meniscus flow when tilting the samples at a 90° angle. The gelling time was measured as the duration from the initial detection of gelation (Miller and Donovan, 1982).

Scanning electron microscopy (SEM)

Using SEM, the morphology of F2 and F3 was examined (SEM, Hitachi, Tokyo, Japan). A drop of in situ gel formulation of F.T. was diluted in double-distilled water (D.W.) (1 in 100) and then air-dried on a sample holder. A range of magnifications and accelerating voltages, up to 15,000 volts, were then used to examine the sample. To get clear pictures, researchers used a high vacuum (Eltahir et al., 2012).

In-vitro drug release study

The researchers studied the diffusion of drugs in different formulations using a Franz diffusion cell (Gowda et al., 2011). A diffusion membrane (molecular weight of 12,000-14,000 Da) was employed for dialysis. The dialysis membrane was immersed in a phosphate buffer solution with a pH of 6.4 for 24 hours before the commencement of the test. The diffusion cell was filled with 21 mL of phosphate buffer solution at a pH of 6.8 and a dialysis membrane was affixed to the cell. The gel, which contained a medication corresponding to a dosage of 2.5 mg, was applied to the donor chamber. A circulating water bath regulated the 32-34°C temperature, 1 mL specimens were collected at different time points (0.5, 1, 3, 6, 12 and 24 hours) and subsequently substituted with an equal volume of the new solution. Subsequently, the specimens underwent filtration and the amount of the pharmaceutical product was quantified by employing a UV-visible spectrophotometer configured to operate at a wavelength of 255 NM.

Compatibility studies

Fourier transform infrared spectroscopy was used at room temperature to examine excipient and medication compatibility (Model-200, Thermo Electron, Shimadzu, Japan). Pure FVT and polymers (both by themselves and in different combinations) were analyzed by Fourier transfer infrared (FTIR) spectroscopy (1:1). The KBr pellet method (Pappas et al., 2003) was used for the analysis of the samples.

Differential scanning calorimetry (DSC)

DSC was used for testing purposes (Netzsch, Hanau, Germany). The samples were heated between 50 and 300 degrees Celsius at 10 degrees Celsius per minute. The empty aluminum pan served as a control in this study of the material; the DSC profiles of FVT, Carbopol 934P and in situ gel (dry power of gel obtained using lyophilization method). A common thermal analysis technique to learn about the energy and physical features of substances and mixtures is the DSC.

Ex-vivo drug permeation study and nasal mucosa preparation

The euthanasia procedure involved the intravenous administration of pentobarbital sodium (100 mg/kg) to three healthy lambs at the age of 6 months. Following the demise of the subjects, the lambs underwent decapitation. Subsequently, the distinct components of the nasal cavity, namely the nasal concha and septum, were submerged in a solution consisting of PBS medium supplemented with 5% double antibody and 1% amphotericin and gentamicin. Subsequently, the distinct variations of the nasal cavity were carefully placed into a 50 mL centrifuge tube pre-filled with PBS and antibiotics. Following the agitation of the container, it was subjected to a series of washing procedures, repeated 3 to 4 times. Each wash cycle was conducted for a duration of 5 to 10 minutes. After the completion of the process, the washed nasal tissue was carefully transferred onto a sterile plate. The nasal mucosa tissue was carefully removed using ophthalmic scissors and tweezers.

Furthermore, a segment of the nasal mucosa is extracted and carefully positioned on a fresh, clean plate, ensuring that the surface is upward. Afterward, the nasal mucosa is treated, resulting in uniformly shaped round tissue fragments of 8 mm in width, using a tissue sampler. The mucosal membrane was pretreated and then placed in a 12-hole transwell equipment, with the mucosal surface facing upwards. The upper compartment filter membrane has a pore diameter of 0.4 \(\mu \)M. Approximately 600 \(\mu \)L of culture media was introduced into the complete transwell device, with a thickness of only half that of the mucosal tissue. The tissue was cultured at 37°C and in an atmosphere containing 5% carbon dioxide. The culture medium was refreshed regularly (Alfi et al., 2020, Zheng et al., 2023).

At 34 degrees Celsius, 12 milliliters of phosphate buffer saline (pH 6.8) were added to the acceptor chamber and agitated with a magnetic stirrer (pure drug solution (2.5 mg/100 dispersion) and optimal formula (F2) were used). After incubating the donor part for 30 minutes, thermoreversible gel compositions were added. 1ml aliquots of samples were taken out at regular intervals up to 24 hours and replaced with phosphate buffer saline pH 6.8. As the dust settled, a spectrophotometer set to 255
nm was used to examine the samples. The drug formulations’ permeability coefficients (in cm/s) were determined with the use of the following formula,

\[
\text{Permeability coefficient} = \left(\frac{d}{d_e} \right) \times \frac{V}{AC_d}
\]

Where \(V \) (mL) is the volume of the receiver compartment; \(A \) (cm\(^2\)) is the permeation area; \(C_d \) (µg mL\(^{-1}\)) is the initial donor concentration and \((\text{dc/dt})_a\) (µg mL\(^{-1}\) s\(^{-1}\)) change of concentration under steady-state (Shelke et al., 2015).

Histopathological assessment

After being treated in PBS (pH 6.8) or a diffusion chamber with the gel formulation, tissue samples were histo-pathologically examined. A 10% buffered formalin solution (pH 6.8) was used to fix the tissue. After being broken into smaller pieces and put on glass slides, paraffin blocks were stained with hematoxylin and eosin. A pathologist unaware of the study’s objectives examined tissue slices under a light microscope for indications of drug penetration outside the body (Majithiya et al., 2006).

ETHICAL APPROVAL

The University of Baghdad approved the study – College of Pharmacy, Research Ethic Committee (approval name: RECAUBCP532022G, approval date: 5-2-2022).

STATISTICAL ANALYSIS

GraphPad Prism 10 was used to make the statistical analysis. One-way ANOVA was used to analyze the difference in mean and post hoc Tukey U test to assess the pair-wise comparison. Alpha level was \(\leq 0.05 \) (significant level).

RESULTS

Visual Appearance Refractive index (ARI)

The refraction index was near the value of 1.33, which is the value for water; F1 showed the highest ARI compared to other formulas (F2 to F6, with no significant difference between them), table 3.

Assessment of pH

The pH for every formula was determined and found to be within the suitable range for the nasal passages (between 5.3 and 7.0 (LEE et al., 2009)). F2 and F6 (no significant difference) showed significantly higher pH values than the other formulas, table 3.

Drug content

According to table 3, the average percentage of active pharmaceutical ingredients across all formulations was between 92.27±0.21% and 99.72±0.02%, with no significant difference among various formulas, table 2.

Viscosity

The Brookfield viscometer readings for each formulation are illustrated in table 4; F2 showed the lowest viscosity and was significantly lower than the other formulas.

Gelling temperature and time

Mucociliary clearance represents a significant constraint in the context of nasal medication delivery. Consequently, utilizing thermoreversible gels is a potentially advantageous preparation strategy for addressing this challenge. The current study involved the development of thermoreversible gel formulations using poloxamer and carbopol to improve the drug’s bioavailability (table 4). The optimal temperature range for nasal administration has been documented to be between 25 and 37 °C (Cho et al., 2011); therefore, the gelling temperature of the product must exceed 25°C to mitigate challenges encountered throughout the mixture’s production, handling and administration processes (Cho et al., 2008), the temperature of the nasal cavity is typically approximately 34°C (Türker et al., 2004). Therefore, we aimed to develop a thermoreversible gel using P407 that would exhibit a gel-like form within the 25 to 34°C temperature range and transition to a liquid state below 25 °C. In the current study, F2 showed the lowest gelation time (8.23±0.32 sec), with a gelation time range for all formulas between 8.23±0.32 to 12.43±0.41 sec, the same time gelation temperature range was 29.32±0.25 to 36.38±0.32°C, indicating all formulas exhibit acceptable gelation temperature. The process of immediate gelling increases the duration of drug residence and improves the extent to which the drug is absorbed and available for use in the body (Pathak et al., 2019). All the formulas become gel quickly. Thus, F2 showed the best value in these regards.

Adding the mucoadhesive ingredient carbopol 934 P to the formula reduces the gelling temperature because it can attach to the poly(ethylene) oxide chains in the poloxamer 407 molecule. As a result, this attachment causes dehydration and enhances the entanglement of neighboring molecules. Micellar interaction is facilitated by the considerable intermolecular hydrogen bonding (Majithiya et al., 2006).

Mucoadhesion

Mucoadhesion data for the F2 and F3 formulation series (645.32±0.054 and 753.24±0.062, respectively) are shown in table 4. In situ gelling nasal formulations benefit greatly from a high mucoadhesive force since this increases the amount of time the gel spends in the nasal cavity before being cleared out without causing any leaks (Galgatte et al., 2014a). More importantly, a gel’s excessively high mucoadhesive force can damage the nasal mucosal membrane [7]; thus, F2 is ideal.
Spreadability
Table 3 illustrates the spreadability profile of various formulas; the F2 formulation of the in-situ gel had the greatest spreading ability (12.88±0.186).

In-vitro cumulative release study
By analyzing how quickly the drugs were released from F2 and F3, we may deduce that the Carbopol’s chemical composition is critical for facilitating drug release. A quick initial release was followed by a delayed maintenance release of the FVT-loaded in situ gel in F2. In the first 30 minutes, around 22.3% of the medication is released, whereas after 24 hours, about 98.56% is released (fig. 2).

Surface morphology - scanning electron microscopy
Shape optimization, segregation, uniformity and monodispersity all point to a stable nanoformulation (Fig. 3). The nanoparticles (N.P.) could stay separated because of the surface charge existing on them, as shown by their monodisperse distribution.

Compatibility studies
The FTIR spectra of the drug in different polymer mixes were compared to the FTIR spectrum of the pure drug. FVT spectra showed a clear peak at 3120.94 and 3497.06 cm\(^{-1}\), confirming the presence of the primary amide group in monohydrate form. Spectral bands at 827 and 1100 cm\(^{-1}\) indicate the presence of an aromatic group, whereas the peak at 1666.48 cm\(^{-1}\) is characteristic of the presence of a C=O bond. The drug is compatible with the gelling agent’s poloxamer 407 and Carbopol 934, as shown by FTIR spectroscopy investigations of drug-polymer interactions, revealing weak physical contact. Figure 3 shows the FTIR spectra of the medication and a physical combination of FVT with poloxamer 407 and Carbopol 934. The peaks at 1690, 1810, 2530, 2900 and 3300 cm\(^{-1}\) were all present, but the strength of the peak at 3500 cm\(^{-1}\) was reduced, demonstrating the weak physical interaction, as illustrated by fig. 4.

DSC studies
The DSC thermogram of FVT-loaded in situ gel, optimized binary ethosome formula and pure FVT drug are seen in fig. 5. The FVT pure drug showed an endothermic peak at 152.98°C, indicating that FVT is pure and crystalline, associated with its melting point and breakdown. The optimized formula FVT binary ethosome showed an endothermic peak of the drug at 102.75°C. The FVT-loaded in situ gel (F2) showed an endothermic peak of the drug at 104.92°C. The decrease in the heat-absorbing capacity of the drug might be attributed to the combination of the drug and other substances, which decreased the purity of each component in the final product. However, this does not necessarily imply probable incompatibility (Rajendra et al., 2016).

Ex vivo permeation study
Ex vivo studies on goat nasal mucosa examined the drug penetration characteristics of in situ gel loaded with FVT. After 48 hours, those exposed to the F2 absorbed 496.38±2.21 mg/cm\(^2\), but those exposed to the FVT solution absorbed just 148.32±1.64 mg/cm\(^2\). The steady-state flow rate of the F2 was 6.985 mg/cm\(^2\)/h, whereas that of the FVT solution was only 1.896 0.14 mg/cm\(^2\)/h. When FVT was encapsulated in situ gel, the medication’s permeability increased by around 3.68-fold compared to the drug solution, indicating that the therapy would diffuse through the nasal mucosa (fig. 6).

Histopathological evaluation of nasal mucosa
Microscopic investigation (as shown in fig. 7) reveals that the new and better formulation did not cause any appreciable changes to the mucosal microstructure. No cell necrosis or epithelium loss was seen in the nasal mucosa while using the formulation and buffer at pH 6.8.

DISCUSSION
Ethosomal systems are lipid vesicles that serve as carriers with a comparatively elevated ethanol concentration. These nanocarriers are precisely designed to efficiently carry therapeutic drugs with various physicochemical characteristics (Abdulbaqi et al., 2016). Binary ethosomes were introduced by Zhou (Zhou et al., 2010). Essentially, the development process involved the incorporation of an additional kind of alcohol into the traditional ethosomes. Propylene glycol (P.G.) is the predominant alcohol in binary ethosomes (Li et al., 2012, Zhang et al., 2012, Akhtar and Pathak, 2012). Phospholipids derived from various sources have been utilized to develop ethosomal systems. The choice of phospholipid type and concentration is crucial in forming an ethosomal system as it directly affects the size, entrapment efficacy, ζ-potential, stability and penetrating properties of the vesicles (Abdulbaqi et al., 2016).

The main factor in ethosomal preparations is the intrinsic characteristics or physicochemical qualities of the drug/agent that will be incorporated because the drug/agent can potentially affect the structure of the ethosomal systems. Generally, ethosomal vesicles demonstrate a negative charge (Abdulbaqi et al., 2016), which aligns with the results of the current investigation. The user's text is empty.

Ethosomal gels show compatibility with ethosomal systems, displaying the required viscosity and bioadhesive properties (Patel et al., 2012, Bhana et al., 2013). Thus the current work directed to formulate a novel binary ethosome nanocarrier as in situ gel formulation by enhancing the characteristic of the final formulation; this work was in agreement with previous work done on two other triptans, namely, Zolmitriptan (Shelke et al., 2016b) and Eletriptan (Shelke et al., 2016a).
Formulation and development of frovatriptan succinate in situ gel for nasal drug delivery

Table 1: Composition of in situ nasal gel of FVT formulations

<table>
<thead>
<tr>
<th>Drug/Excipients</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary ethosome dispersion (containing 5 mg of FVT / mL)</td>
<td>5 mL</td>
<td>5 mL</td>
<td>5 mL</td>
<td>5 mL</td>
<td>5 mL</td>
<td>5 mL</td>
</tr>
<tr>
<td>Poloxamer 407 (%w/v)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Carbopol 934 (%w/v)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Methyl paraben (%w/v)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>SNF q. s.</td>
<td>10 mL</td>
<td>10 mL</td>
<td>10 mL</td>
<td>10 mL</td>
<td>10 mL</td>
<td>10 mL</td>
</tr>
</tbody>
</table>

SNF: Sulphonated Naphthalene Formaldehyde, q. s.: sufficient quantity

Table 2: Physical characterization of FVT loaded in situ gel formulations.

<table>
<thead>
<tr>
<th>Batch code</th>
<th>Visual Appearance</th>
<th>Refractive index</th>
<th>pH</th>
<th>% Drug contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Milky white</td>
<td>1.465±0.02</td>
<td>5.49±0.023</td>
<td>92.27±0.21</td>
</tr>
<tr>
<td>F2</td>
<td>Milky white</td>
<td>1.339±0.01</td>
<td>6.35±0.164</td>
<td>99.72±0.02</td>
</tr>
<tr>
<td>F3</td>
<td>Milky white</td>
<td>1.349±0.01</td>
<td>5.46±0.052</td>
<td>95.43±0.14</td>
</tr>
<tr>
<td>F4</td>
<td>Milky white</td>
<td>1.385±0.02</td>
<td>5.39±0.027</td>
<td>98.34±0.37</td>
</tr>
<tr>
<td>F5</td>
<td>Milky white</td>
<td>1.341±0.03</td>
<td>5.84±0.126</td>
<td>98.21±0.28</td>
</tr>
<tr>
<td>F6</td>
<td>Milky white</td>
<td>1.351±0.01</td>
<td>6.02±0.135</td>
<td>96.56±0.11</td>
</tr>
</tbody>
</table>

A column with a similar letter indicates no significant difference (p-value>0.05)

Table 3: Physical parameters of FVT loaded in situ gel formulations.

<table>
<thead>
<tr>
<th>Batch code</th>
<th>Mucoadhesive strength (dyne/cm²)</th>
<th>Viscosity (cps) (100 rpm)</th>
<th>Cumulative Drug release (%) After 24 hours</th>
<th>Spreadability (cm²/min)</th>
<th>Gelation temperature (°C)</th>
<th>Gelation time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>896.45±0.025a</td>
<td>1235.2±1.253a</td>
<td>75.38±0.025</td>
<td>9.68±1.31ab</td>
<td>36.38±0.32a</td>
<td>9.29±0.26a</td>
</tr>
<tr>
<td>F2</td>
<td>645.32±0.054b</td>
<td>658.92±0.649b</td>
<td>98.56±0.041</td>
<td>12.88±0.19ab</td>
<td>34.14±0.45b</td>
<td>8.23±0.32b</td>
</tr>
<tr>
<td>F3</td>
<td>753.24±0.062c</td>
<td>1564.2±1.283c</td>
<td>83.21±0.329</td>
<td>10.57±1.27ab</td>
<td>32.15±0.32c</td>
<td>10.65±0.17b</td>
</tr>
<tr>
<td>F4</td>
<td>986.41±0.342d</td>
<td>1127.3±0.462d</td>
<td>90.68±0.162</td>
<td>8.64±0.98ab</td>
<td>30.34±0.52d</td>
<td>11.74±0.45b</td>
</tr>
<tr>
<td>F5</td>
<td>1234.52±0.049e</td>
<td>1059.4±1.385e</td>
<td>88.03±0.318</td>
<td>7.82±1.34ab</td>
<td>31.42±0.32d</td>
<td>12.43±0.41b</td>
</tr>
<tr>
<td>F6</td>
<td>1568.92±0.021f</td>
<td>984.32±1.426f</td>
<td>75.34±0.214</td>
<td>6.37±1.29b</td>
<td>29.32±0.25f</td>
<td>10.56±0.32a</td>
</tr>
</tbody>
</table>

A column with a similar letter indicates no significant difference (p-value>0.05)

Fig. 1: particle size of FVT-loaded binary ethosome dispersion formula
Fig. 2: *In vitro* drug diffusion profiles of FVT solution, F2 and F3 in situ gel formulation.

Fig. 3: SEM image of an optimized batch of F2 and F3.

Fig. 4: FTIR spectral studies of 1) Pure Drug (black line; line-11), 2) phospholipon 90H (red line; line-21), 3) Ethanol (white, blue; line-31), 4) propylene glycol (light green; line-41), 5) Poloxamer 407 (white gray; line-51), 6) F9 (dark red; line-61), 7) Carbopol 934 (dark green; line-71), 8) G2 (dark blue; line 81).
Fig. 5: DSC Thermograms of A) optimized formula FVT binary ethosome, B) FVT loaded in situ gel (F2), C) Pure Drug

Ex vivo permeation study

Fig. 6: Ex vivo permeation study at nasal pH 6.4

Fig. 7: Histopathological studies of A) Normal, B) Positive control and C) F2.
Zolmitriptan is a partial 5HT571B/1D receptor agonist employed to treat acute migraines (Gooriah et al., 2015). It is commercially available in orally disintegrating tablets and nasal sprays (Dowson et al., 2002, Belvis et al., 2009, Yates et al., 2002). The main challenges of traditional distribution include first-pass metabolism, low bioavailability, multiple administration and significant systemic adverse effects (Solomon et al., 1997). To address this issue, Shelke et al. (2016) incorporated Zolmitriptan into nanoethosomes and developed a thermosensitive mucoadhesive in situ gel containing the drug-loaded N.P. The N.P. was formulated using the ethanol injection method. The refined composition was integrated into a thermostresponsive in situ gel based on P407, with Hydroxypropyl Methyl Cellulose K100 and carbopol 934 as the mucoadhesive agent. The formulation exhibited gelation at temperatures ranging from 32 to 34°C. The gel characterization exhibited a positive correlation with the quantity of the mucoadhesive agent. The pH was measured to be 6.1, which indicates that it is within a range that the nasal mucosa can tolerate well. The drug release in a controlled environment and the drug penetration through biological tissues outside the body demonstrated a continuous and gradual release of the drug through the process of diffusion. The incorporation of the gelling agent and mucoadhesive polymer resulted in a deceleration of the medication release rate. Furthermore, the penetration coefficient was determined to be 5.9 µg/cm². Additionally, the histological analysis verifies the formulation’s lack of toxicity. Overall, the current technique provides a superior approach for managing migraines (Shelke et al., 2016b).

Comparably, Shelke et al. 2016 replicated a similar approach with another triptan drug (eletriptan hydrobromide); eletriptan hydrobromide functions as an agonist for the 5HT1B receptor (Takiya et al., 2006, Slassi, 2002, Hoskin et al., 2004) due to its limited oral bioavailability of 50%, the drug's therapeutic effectiveness is reduced. In addition, the administration of the medication orally results in a range of unfavorable side effects, such as nausea, numbness, dizziness, sleepiness, weakness and serotonin poisoning that is dependent on the dosage (Pichard-Garcia et al., 2000). To overcome the constraints and create a highly efficient system for delivering eletriptan hydrobromide to the brain, Shelke et al. devised and enhanced the drug-loaded ethosomal formulation using the method previously outlined. In addition, the ethosome that was created was included in a thermoreversible in situ gel. The formulation exhibited a sol-gel transition temperature ranging from 32 to 34°C, which is suitable for nasal delivery. The formulation’s pH is also within an appropriate range; chemical linking between the mucoadhesive polymer and the mucus membrane led to a robust mucoadhesive property of the gel (Wang et al., 2013). In addition, it revealed sustained release properties in vitro release. In addition, no indication of local toxicity was observed in the ex vivo permeation analysis and histological assessment. The IN in situ gel demonstrated efficacy and safety in delivering anti-migraine drugs to the brain (Shelke et al., 2016a).

CONCLUSION

The thermoreversible polymer and carbopol in In Situ Gel F2 provided superior gelation viscosity, gel strength, drug release capabilities and mucoadhesive strength. A thermoreversible, mucoadhesive in situ intranasal gel containing frovatriptan succinate was created. Gel’s mucoadhesive quality extends its stay in the nasal cavity and its thermoreversible nature makes it convenient to handle and administer. Carbopol 934 at a w/v concentration of 0.2% is optimal regarding mucoadhesive strength and the required phase transition temperature. The drug’s efficacy is boosted by the carbopol, which also facilitates better penetration. This formulation did not significantly harm the nasal mucosa.

The present study’s findings support using Frovatriptan succinate as a novel mucoadhesive in situ intranasal gel for treating migraines. We recommend using this formulation instead of the available marketed oral dosage form, which has poor systemic bioavailability and permeability to the brain since it enhances Frovatriptan succinate bioavailability and permeability to the brain.

ACKNOWLEDGMENT

We want to thank the Department of Pharmaceutics College of Pharmacy University of Baghdad for their help completing this work.

REFERENCES

Patel KK, Kumar P and Thakkar HP (2012). Formulation of niosomal gel for enhanced transdermal lopinavir

