
doi.org/10.36721/PJPS.2024.37.5.REG.949-959.1 

Pak. J. Pharm. Sci., Vol.37, No.5, September 2024, pp.949-959 949 

New dynamic scoring method for deep evaluation of naloxegol  

as β-tubulin binding inhibitor  
 
 

Hamdullah Khadim Sheikh1,2*, Jose M Padron2, Tanzila Arshad1, Uzma Habib3,  

Shahnila Jamil1, Haroon Khan4 and Khurshid Ayub5 
1Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan 
2BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, San Cristóbal de La 

Laguna, Spain 
3School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, 

Pakistan 
4Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan 
5Department of Chemistry, COMSATS University, Islamabad, Pakistan 

 
 

Abstract: We report a new scoring method for rating the performance of ligands on same protein, using their extensive 

dynamic flexibility properties, binding with protein, and impact on receptor protein. Based on molecular dynamics 

(MD), this method is more accurate than single-point energy calculations. This method identified an ideal FDA-approved 

drug as β-tubulin microtubule inhibitor with improved attributes compared to commercial microtubule disassembly 

inhibitor, Paclitaxel (PTX). We started with virtual screening (VS) of FDA-approved drugs inside PTX’s binding pocket 

(A) of human β-tubulin protein.  Screened ligands (>80% score) were evaluated for non-permeation through blood-brain 

barrier (BBB) as targets were body cancers, gastrointestinal absorption, Lipinski, non-efflux from central nervous system 

(CNS) by p-glycoprotein (Pgp) and ADMET analysis. This identified FDA-approved Naloxegol drug with superior 

attributes compared to PTX. Pocket (A) specific docking of chain length variable derivatives of Naloxegol gave docked 

poses that underwent MD run to give a range of properties and their descriptors (RMSD, RMSF, RoG, H-bonds, 

hydrophobic interaction, and SASA). QSPR validated that MD properties dependent upon [-CH2-CH2-O-]n=0-7 chain 

length of Naloxegol. MD data underwent normalization, PCA analysis, and scoring against PTX. One Naloxegol 

derivative scored higher than PTX as a potential microtubule disassembly inhibitor.  
 

Keywords: Computer-aided drug design, β-tubulin, ADMET, molecular dynamics simulations, paclitaxel, QSPR 

modeling. 

 

INTRODUCTION 
 

Microtubules (MTs) are assembled of dimers of α and β-

tubulin.  MTs constitute the third principal component of 

the cytoskeleton and are rigid hollow rods that undergo 

continuous assembly and disassembly within the cell. 

MTs determine shape and function of cell movements, the 

intracellular transport of organelles and separation of 

chromosomes during mitosis through depolymerization. 

The depolymerization starts with the hydrolysis of 

guanosine triphosphate (GTP), which is bound to β-

tubulin. GTP gets hydrolyzed to guanosine diphosphate 

(GDP), which weakens the binding affinity of tubulin 

with adjacent molecules, thereby favoring 

depolymerization (Gudimchuk et al., 2021). During 

mitosis, these free tubulins reassemble themselves to form 

mitotic spindles that are further responsible for the 

chromosome separation of the daughter cells during 

mitosis. Thus, MTs disassembly plays an important part 

during cell division. Because of this, several 

chemotherapeutic drugs target different binding sites of 

human β-tubulin such as PTX, colchicine and the vinca 

alkaloids, etc. (Cermak et al., 2020). PTX belongs to the 

category of cytoskeletal drugs that stabilize the 

microtubule polymer and prevent the disassembly 

process. As a result, chromosomes are unable to achieve a 

metaphase spindle configuration, which blocks the 

progression of mitosis of the cell cycle for cell division 

(Cheng et al., 2020). This mechanism enables PTX to 

hinder the multiplication of cancer cells of many types 

such as pancreatic, ovarian cancer, breast, lung and 

cervical cancer. However, being a naturally obtained 

molecule with a large and non-rigid structure, PTX has 

many side effects due to its nonspecificity and multiple 

absorption, distribution, metabolism, excretion and 

Toxicity (ADMET) violations. Some other side effects are 

also due to the use of excipients such as Cremophor EL, 

polyoxyethylated castor oil, or co-administered drugs like 

cyclosporine and teniposide, but most of the side effects 

are due to non-specificity of the structure of PTX itself. 

Moreover, PTX is not ingestible so cannot be taken 

orally, and is effluxed by Pgp. PTX also has multiple 

ADMET violations. Thus, there remains the need for new 

structure-based designed ligands for inhibition of β-

tubulin particularly focusing on PTX's specific binding 

pocket (A) without all these shortcomings. The structure-

based drug design approach has three major categories. 

The first one is VS for the identification of ligands by *Corresponding author: e-mail: hamdullah.khadim.sheikh@gmail.com 
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searching through massive databases of known drugs to 

find those that fit within the binding pocket of the 

receptor using quick approximation docking. The second 

category belongs to the de novo design of new ligand 

molecules that are built inside the determined binding 

pocket by sequentially assembling fragments (Batool et 

al., 2019). The third method is the structural optimization 

of already known ligands. In this work, we used VS and 

lead optimization approaches on the tubulin protein 

containing PTX ligand. Candidate drugs were screened to 

fit best inside the PTX pocket using the VS approach with 

a high affinity. To reduce the side effects of the ligands 

and keep them from crossing the blood-brain barrier 

(BBB) while being ingestible, we performed the structural 

optimization of the VS resultant ligand. We intended to 

find candidates with a high affinity for PTX's pocket (A) 

while not crossing the BBB, having less ADMET 

violations, capable of being ingestible and not effluxed by 

Pgp. The better binding may lead to higher drug 

performance and better ADMET attributes can result in 

reduced side effects. There exist many examples of 

structure-based drug discovery approach being used in 

medicinal chemistry for development of newer drug 

candidates or the optimization of structures (Sabe et al., 

2021). After deep screening, we used ligand scoring 

method based on MD resultant ligand’s dynamic 

properties and their binding interactions. The properties 

included root mean square deviation (RMSD) of ligand 

and protein, root mean square fluctuation (RMSF) of the 

ligand, radius of gyration (RoG), solvent accessible 

surface area (SASA), Lennard Jones (ELJ), Coulombic 

energy (EC), H-bonds and hydrophobic interactions. The 

corresponding descriptors for these properties, such as 

average values and standard deviations are normalized to 

ensure a consistent ranking of ligands. Subsequently, 

Principal Component Analysis (PCA) is employed to 

assign weights or loadings to these descriptors, ranking 

them into a comprehensive scoring system. This scoring 

system effectively rates the ligands against PTX, offering 

a dynamic assessment of their potential as microtubule 

disassembly inhibitors. No such study on this specific site, 

pocket (A) has been performed before in similar depth. 

Through this extensive screening we found the Naloxegol 

drug as lead and its mildly modified derivatives with 

better ADMET character and good docking score. 

Naloxegol is not proposed as a potential 

chemotherapeutic candidate before this study either.  
 

MATERIALS AND METHODS 
 

Detailed and stepwise methodology is given in part A of 

fig. 1. The datasets of calculations performed in this study 

and the supplementary information are available at  

https://dx.doi.org/10.17632/56n4b67mbx.1 
 

Reception site preparation & VS 

The PDB (.pdb) file 6I2I contains the structure of real 

human HeLa cancer microtubule protein, downloaded 

from Protein Data Bank (Liu et al., 2021). This structure 

was generated by electron microscopy (EM) method with 

a resolution of 3.60Å. The quality of the 6I2I PDB 

receptor file was verified by Ramachandran plot (An et 

al., 2023). 82.2% of residues were in most favored 

regions, 17.8% were allowed, while no residue was 

present in disallowed regions making 6I2I PDB file 

useable. The attached ligands G2P 

(phosphomethylphosphonic acid guanylate ester), GTP 

(guanosine-5'-triphosphate), Mg+2 atoms, and TA1 (PTX) 

were removed along with H2O molecules, and polar H 

atoms were added to the structure using Discovery Studio 

(Version 2021) (Wang et al., 2015). The α-tubulin part 

was also removed and the coordinates of the receptor 

pocket (A) where ligand TAI was bound were noted as 

x=38.67, y=58.61 and z=91.64 with radius of 9.81. This 

was designated as pocket “A”. The PDB of 6I2I receptor 

before and after optimization is available in the dataset 

and in fig. 1B, while its Ramachandran plot is given in 

fig. S1 in supplementary information. The VS on the 

modified 6I2I.pdb was performed on e-LEA3D utility 

(Singh et al, 2021) with x=38.67, y=58.61 and z=91.64 

coordinates from the reception site preparation step. We 

screened e-LEA3D’s built-in library of FDA approved. 

An additional total 6894 drug ligands of which 1379 were 

FDA approved drugs, 2068 were drug molecules that 

were approved by non-FDA bodies and 3447 were 

approved drugs in major jurisdictions (approved by FDA 

& DrugBank) were screened as well. Libraries of drugs 

were downloaded from the ZINC database (Potlitz et al., 

2023).  
 

BBB, Gastrointestinal absorption, PGP, ADMET 

screening & Lead optimization 

Among the entire screened ligands, only the built-in e-

LEA3D library gave ligands with non-permeation through 

BBB, non-efflux by Pgp and gastrointestinal absorption. 

The screened ligands were further filtered based on the 

criteria of having more than 80% score. This gave ligands 

(1-30), available in dataset. Structures (1-30) from VS 

were first screened for Lipinski’s rule of five violations 

using Swiss ADMET tools and non-permeation through 

the BBB, since our targets are cancer cells outside the 

brain. In BBB sphere presented in part C of fig. 1, the 

points located within the yellow spherical part represent 

the ligands that may permeate through the BBB. The ones 

in the white part are supposed to be absorbed by the 

gastrointestinal tract, suggesting oral availability. Further 

required attribute was non-efflux from the CNS by Pgp 

which ensured that ligand persists within the cancer cell 

and is not pumped out (Waghray and Zhang, 2018). The 

blue dots indicate that the ligand can be effluxed from 

CNS by the Pgp, whereas the red ones are predicted to be 

the opposite. Results of BBB permeation, gastrointestinal 

absorption and Pgp efflux are given in the BOILED-Egg 

plot shown in part C of fig. 1 (and fig. S1 in 

supplementary information).  
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Upon ADMET screening performed on ligands (1-30) 

through Swiss ADEMT utility (Sardar, 2023), only 

Naloxegol (18) fitted the criteria of low violations in 

ADMET, non-permeation through BBB, non-efflux by 

Pgp while being gastrointestinal absorbable, hence was 

chosen for further analysis. It was found that number of 

ADMET violations was the function of length of [-CH2-

CH2-O-]n=0-7 chain length on structure of Naloxegol (18). 

Hence to find the best chain length derivative of 

Naloxegol with lowest ADMET violations, variable 

polyethylene glycol (PEG) chain length [-CH2-CH2-O-

]n=0-7 were designed and designated as (18a-h) in which 

Naloxegol itself was designated (18h) with n=7 (fig. 1D). 

Ligands (18a-h) and PTX were again analyzed for 

ADMET, BBB and efflux by Pgp (fig. 1C). The data on 

ADMET of ligands (18a-h) and PTX are available in the 

table S1 of supplementary information.. 
 

Docking 

Swiss docking facility (Grosdidier et al., 2011) was used 

to perform accurate mode docking of Naloxegol 

derivatives (18a-h) and PTX on the 6I2I reception site. 

This was done to create docked poses to be used in MD. 

Same PTX specific binding pocket (A) was described in 

terms of coordinates (as x=38.67, y=58.61 and z=91.64) 

to restrict ligand interaction within the desired region. 

After the docking assay, the predicted binding modes 

were visualized on UCSF Chimera (Jonathan et al., 2015) 

and were downloaded (ZIP file) containing PDB files of 

docked adducts selective to pocket (A) where TAI (PTX) 

drug molecule was located initially. Binding mode with 

highest binding energy (-Kcal/mol) was selected for 

further analysis through MD. The entire data of docked 

PDBs and binding modes is available in the dataset.  The 

data on binding energies and docking-related modes of 

interaction of ligands (18a-h) and PTX are available in 

tables S2-S3 of supplementary information.. 
 

MD run & Calculation of descriptors 

MD simulations were carried out using GROMACS 

software (Version 5.1) (Lemkul, 2019) to evaluate the 

stability of docking poses of ligands (18a-h) and PTX 

within the pocket (A) of 6I2I receptor obtained from 

docking. The topologies and coordinate files of reception 

site and ligands from the docking study were separately 

created and parameterized with the CHARM2021 force 

field. The receptor and ligand adduct was joined again 

into an adduct, contained within a cubical box in which 

the adduct was at least 1 nm from the edges of the box to 

maintain at least 2 nm distance. The adduct was solvated 

with TIP3P H2O molecules and Na+ counter ions to 

neutralize the solvated system. This was followed by 

energy minimization with the steepest descent 

minimization algorithm and conjugate gradient protocol 

until the maximum force becomes less than 10 kJ mol−1 

nm−1. Energy minimization was followed by restrained 

constant number of particles, volume and temperature 

isochoric-isothermal (NVT) equilibration at 300K and a 

constant number of particles, pressure (500 psi) and 

temperature (NPT) ensemble equilibration. This 

equilibrated ensemble from the resultant trajectory file 

was finally subjected to MD simulation for 10 ns, with 

electrostatic and van der Waals cut-off of 1.2 nm. The 

resultant trajectory files (.xtc) were used for calculation of 

properties; RMSD (fig. 2), RMSF, RoG, SASA, H-bonds, 

hydrophobic interactions and interaction energies (fig. S3-

S7 in supplementary information). Further descriptors 

such as average and standard deviation were then 

calculated. MD-related data of calculated properties, and 

descriptors are available in the dataset. 
 

QSPR validation of MD descriptors & Scoring functions  

Quantitative Structure-Property Relationship (QSPR) was 

established to validate correlation between molecular MD 

descriptors and the chain lengths [-CH2-CH2-O-]n=0-7 of 

Naloxegol. Only descriptors with strong coefficient of 

determination (R2>1) values were chosen for use in 

scoring functions. The RMSD related QSPR plots are 

presented in fig. 3 while the rest of the QSPR plots related 

to RMSF, RoG, H-bonds, hydrophobic interaction and 

SASA descriptors are given in  S7-S9 in supplementary 

information. Descriptors derived from MD simulations 

underwent normalization using two normalization 

methods. For descriptors where a higher value indicates 

better performance, equation 1 was used, meanwhile, 

where a lower value is better equation 2 was used. 
 

Normalized Value = (Descriptor Value - Min 

Value)/(Max Value - Min Value)…. Eq 1. 

Normalized Value = 1 - (Descriptor Value - Min Value) / 

(Max Value - Min Value) …. Eq 2. 
 

Principal Component Analysis (PCA) transformed the 

normalized descriptors into a set of linearly uncorrelated 

variables called principal components. Weights were 

assigned to each descriptor and scoring functions were 

created by equation 3.  
 

Ligand Score = Σ(Normalized Descriptor × Weight) …. 

Eq 3. 
 

Ligands were ranked based on sum of their scores. A 

score higher than PTX indicates a better performance, 

while a lower score suggests a less favorable performance 

than PTX. The entire dataset of scoring functions (.xls) is 

available in supplementary information available in 

dataset.  
 

RESULTS 
 

The data on descriptors derived from MD properties of 

ligands (18a-h) and PTX, such as RMSD, RMSF, RoG, 

SASA, ETotal, ELJ, EC, H-bonds (within 0.35 nm) and 

hydrophobic interaction, are given below in tables 1-7. 

While, trends in QSPR of MD properties related 

descriptors against variable chain length [-CH2-CH2-O-

]n=0-7 and  final scores of ligands (18a-h) and PTX are 

provided in tables 8-9.   
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DISCUSSION 
 

Target site preparation, VS & Lead optimization 

For structure-based drug design, we used VS and lead 

optimization approach for pocket (A). Only the Neloxegol 

(18h) was found to have non-permeation through the 

BBB, absorption by the gastrointestinal tract, non-efflux 

from the CNS by Pgp and Lipinski’s rule compliance as 

shown in fig. 1C. Naloxegol is a μ-opioid receptor 

antagonist, used for opioid-induced constipation (OIC). It 

is a pegylated derivative of the opioid antagonist 

naloxone, designed to reduce the gastrointestinal side 

effects of opioids. The PEG chain increases the molecular 

size and polarity of the molecule, thus reducing its ability 

to permeate the BBB thus restricting it to peripheral 

tissues. The [-CH2-CH2-O-]n chain length was varied to 

n=0-7 (18a-h), to make the molecule reduced in size, less 

flexible, thus violations in ADMET in the non-optimized 

Naloxegol (18h) structure were reduced. The final 

ADMET results can be seen in fig. 1C.  

 

Fig. 1: (A) Entire methodology (B) Original 6I2I protein PDB, 6I2I with only b-tubulin and PTX and 6I2I with no 

ligand attached, for Virtual screening. (C) ADMET and BBB for Naloxegol and derived ligands (18a-h). (D) Molecular 

structures of ligands (18a-h) and PTX. 
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Fig. 2: RMSD plots of ligands (18a-h) and PTX on time scale of 10 ns. 

 
Fig. 3: QSPR plots of RMSD and RMSF related descriptors of ligands (18a-h) and PTX against variable chain length [-

CH2-CH2-O-]n. 
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Table 1: Root mean square deviation (RMSD) related descriptors. 
 

Ligand 
[-CH2-

CH2-O-]n 
Avg. 

RMSD 
Std. 
Dev. 

Equilibrium 
Period 

Avg. 
RMSD 

Std. 
Dev. 

Equilibrium 
Period 

Avg.  
RMSD 

Std. Dev. 
Equilibrium 

Period 

  Backbone Ligand Ligand-Backbone 

PTX  0.191 0.012  0.289 0.021  0.644 0.038  

18a 0 0.178 0.024  0.078 0.015  0.314 0.165  
18b 1 0.189 0.014  0.123 0.011  0.216 0.030  

18c 2 0.181 0.014  0.149 0.014  0.195 0.016  

18d 3 0.189 0.016  0.208 0.054  2.551 2.183  
18e 4 0.175 0.009  0.165 0.023  0.397 0.076  

18f 5 0.147 0.010  0.290 0.083  0.649 0.177  

18g 6 0.175 0.011  0.393 0.064  0.641 0.128  
18h 7 0.160 0.006  0.395 0.058  0.855 0.070  

 

Table 2: Root mean square fluctuation (RMSF) related descriptors. 
 

Ligand [-CH2-CH2-O-]n Mean RMSF Max. RMSF Number of Peaks > Avg. RMSF Std. Dev. of RMSF 

PTX  0.135 0.525 5 0.105 

18a 0 0.046 0.193 5 0.044 

18b 1 0.066 0.188 6 0.050 

18c 2 0.079 0.240 5 0.060 
18d 3 0.157 0.349 8 0.066 

18e 4 0.096 0.278 9 0.050 

18f 5 0.181 0.489 10 0.097 
18g 6 0.270 0.598 13 0.113 

18h 7 0.270 0.522 13 0.980 

 

Table 3: Radius of gyration (RoG) related descriptors. 
 

Ligand 

[-CH2-

CH2-O-

]n 

Max.  
RoG 

Min. 
RoG 

Avg. 
RoG 

Std. 
Dev. 

Max.  
RoG 

Min. 
RoG 

Avg. 
RoG 

Std. 
Dev. 

Max.  
RoG 

Min. 
RoG 

Avg. 
RoG 

Std. 
Dev. 

  Ligand-Protein Ligand Protein 

PTX  2.18 2.14 2.16 0.0070 0.47 0.39 0.440 0.0100 2.19 2.14 2.16 0.0079 

18a 0 2.16 2.12 2.14 0.0054 0.33 0.31 0.322 0.0039 2.17 2.13 2.15 0.0056 

18b 1 2.18 2.14 2.15 0.0064 0.40 0.35 0.386 0.0071 2.18 2.14 2.15 0.0063 

18c 2 2.18 2.14 2.16 0.0079 0.39 0.47 0.440 0.0106 2.19 2.14 2.16 0.0079 

18d 3 2.34 2.13 2.16 0.0290 0.58 0.39 0.500 0.0320 2.18 2.12 2.15 0.0100 

18e 4 2.18 2.14 2.16 0.0063 0.44 0.39 0.440 0.0200 2.18 2.14 2.16 0.0063 
18f 5 2.17 2.13 2.15 0.0066 0.70 0.42 0.570 0.0620 2.17 2.13 2.15 0.0070 

18g 6 2.17 2.13 2.15 0.0083 0.78 0.43 0.550 0.0840 2.17 2.13 2.15 0.0065 

18h 7 2.18 2.13 2.15 0.0068 0.79 0.43 0.540 0.0600 2.17 2.13 2.15 0.0070 

 

Table 4: Solvent accessible surface area (SASA) related descriptors. 
 

Ligand 
Avg. Ligand 

SASA 

Avg. Polar Ligand 

SASA 

Avg. nonpolar Ligand 

SASA 

Avg Protein 

SASA 

Avg SASA of Protein-

Ligand 

PTX 10.1 4.35 4.35 191.84 192.64 
18a 5.24 2.63 5.79 189.28 187.98 

18b 6.36 2.8 6.59 190.7891 188.48 

18c 7.15 3.12 7.28 191.33 188.56 
18d 7.79 3.25 7.81 186.92 189.64 

18e 7.58 3.51 8.33 191.59 189.02 

18f 9.39 3.8 9.24 188.61 189.22 
18g 9.65 3.98 9.48 189.55 188.45 

18h 9.63 4.57 10.17 190.94 191.313 
 

Table 5: Interaction energy (EI) along with Lennard Jones (ELJ) and Coulombic energy (EC) related descriptors. 
 

Ligand Avg. EJ Std. Dev. Avg. EC Std. Dev. EI = ELJ + EC 

PTX -131.64 19.00 -38.40 24.84 -170.04 

18a -91.65 12.27 -38.01 22.94 -129.66 

18b -123.71 11.69 -33.92 22.90 -157.63 
18c -163.94 14.39 -53.08 17.06 -217.02 

18d -69.09 45.18 -17.62 23.55 -86.72 

18e -155.98 13.73 -44.14 35.56 -200.12 
18f -157.41 15.07 -37.47 24.00 -194.88 

18g -84.00 55.84 -162.4 25.17 -246.43 

18h -131.18 33.43 -95.79 36.35 -226.97 
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Table 6: H-bonds (within 0.35 nm) between ligand-protein related descriptors. 
 

Ligand Total H-bonds Avg. H-bonds Std. Dev. (Stability of H-Bonds) 

PTX 1516 1.51 1.36 
18a 1472 1.47 1.75 

18b 593 0.59 0.93 

18c 1019 1.01 1.1 
18d 957 0.95 2.28 

18e 1520 1.51 1.72 

18f 2736 2.73 1.65 
18g 2047 2.07 1.64 

18h 458 0.45 0.83 
 

Table 7: Hydrophobic interaction between ligand-protein related descriptors. 
 

Ligand Minimum Distance (Avg.) Std. Dev. 

PTX 0.524 0.099 
18a 0.785 0.207 

18b 0.493 0.089 

18c 0.432 0.063 
18d 0.778 0.318 

18e 0.479 0.069 

18f 0.486 0.078 
18g 0.454 0.082 

18h 0.513 0.051 
 

Table 8: Trends in QSPR of MD properties related descriptors against variable chain length [-CH2-CH2-O-]n=0-7, explained as: Descriptor 

increases/decreases/fluctuates/stable with 'n'; R² gives strength of correlation of QSPR; specific derivatives with chain length (n) being 

higher or lower than the PTX standard line. 
 

Main Property MD related Property Descriptors vs Chain Length [-CH2-CH2-O-]n 

RMSD Avg. RMSD of 

Ligand 

Std. Dev. Avg. 

RMSD of Ligand 

Avg. RMSD of 

Backbone 

Std. Dev. of RMSD 

of Backbone 

Avg. RMSD of 

Ligand-Backbone 

Std. Dev. of RMSD 

Ligand-Backbone 

QSPR Trend Increases, 
R2=0.90; 

n=0-5 < PTX, 

n=6-7 > PTX 

Increases, R2=0.62; 
n=2, 6 > PTX, 

n=0-5, 7 < PTX 

Stable, R2=0.40; 
n=0-7 < PTX 

  

Decreases, 
R2=0.60; 

n=0-1, 3 > PTX 

n=2, 4-7 < PTX 

Stable, R2=0.03; 
 n=0-7 < PTX 

Spike at n=3 

Stable, R2=0.005; 
n=0-7 < PTX 

Spike at n=3 

RMSF Avg. RMSF of 

Ligand 

Max. RMSF of 

Ligand 

Number of Peaks 

> Avg. RMSF of 

Ligand 

Std. Dev. of RMSF 

of Ligand 

    

QSPR Trend Increases, 

R2=0.86;  

n=1-4 < PTX, 
n=6-7 > PTX 

Increases, R2=0.84;   

n=0-5 < PTX 

n=6-7 > PTX 

Increases, 

R2=0.92;   

n=0-5 < PTX 
n=6-7 > PTX 

Increases, R2=0.40;   

n=0-6 < PTX 

n=7 > PTX 

    

RoG Avg. RoG of 

Ligand 

Std. Dev. 

Avg. RoG 
Of Ligand 

Avg. RoG of 

Protein 

Std. Dev. of 

Avg. RoG of 
Protein 

Avg. RoG of 

Ligand-Backbone 

Std. Dev. of 

Avg. RoG of 
Ligand-Backbone 

QSPR Trend Increases, 

R2=0.80;  
n=0-2 < PTX 

n=3-7 > PTX 

Increases, R2=0.80;  

n=0-2 < PTX 
n=3-7 > PTX 

Fluctuates, 

R2=0.01; 
; n=0-7 < PTX 

  

Stable, R2=0.01; 

n=0-7 < PTX 
Spike at n=3 

Stable, R2=0.02; 

N=0-7 < PTX 
  

Stable, R2=0.01; 

 n=0-7 < PTX 
Spike at n=3 

SASA Avg. Ligand 
SASA 

Avg. Protein SASA Avg. Ligand-
Protein SASA 

    

QSPR Trend Increases, 
R2=0.92;   

 n=0-7 < PTX  

Fluctuates, 
R2=0.0012;   

 n=0-7 < PTX 

Fluctuates, 
R2=0.47;   

 n=0-7 < PTX 

  
  

  

  
  

  

  
  

  

Interaction 
Energy 

Avg. ELJ Avg. EC ETotal = ELJ + EC Std. Dev. of ETotal     

 

QSPR Trend 

Decreases,  

R2=0.29; 

n=2-7 < PTX 

n=0-1 > PTX 

Decreases, 

R2=0.40; 

n=2, 4-7 < PTX 

n=0-1, 3 > PTX 

Decreases, 

R2=0.40; 

n=2,4-7 < PTX 

n=0-1,3 > PTX 

Increases, R2=0.39; 

n=0-2,4-5 < PTX 

n=3,6-7 > PTX 

    

H-Bond Total H-Bond Avg. H-Bond         
 

QSPR Trend 

Increases, 

R2=0.31;   

n=0-4,7 < PTX 
n=5-6 > PTX 

Increases, R2=0.13;   

n=1-2,7 < PTX 

n=0, 3-7 > PTX 

       

Hydrophobic 

Interaction 

Avg. Min. 

Distance 

Std. Dev. of Avg. 

of Min. Distance 

        

 

QSPR Trend 

Decreases, 

R2=0.21;  

 n=1-2,4-7< 
PTX 

n=0, 3 > PTX 

Decreases, 

R2=0.17;   

n=1-2,4-7 < PTX 
n=0, 3 > PTX 
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For comparison purposes, PTX molecule does not fit 

within the ADMET radar and has multiple violations 

against the ADMET attributes. PTX also does not show 

gastrointestinal absorption and thus cannot be taken orally 

while the designed ligands show gastrointestinal 

absorption. One of the added advantages of Naloxegol 

derivatives (18a-h) is planar structures with lesser 

rotatable bonds compared to PTX, which reduces its 

conformational flexibility and enhances stability inside 

the receptor pocket (A), which was further verified 

through MD. Compared to this, flexible structure can 

change its conformations which will result in unstable 

interactions with the receptor site within the pocket. 

Ligands (18a-h) also contain less heavy atoms. Although 

PTX being larger has higher number of H-bond 

acceptor/donor sites which enhances H2O solubility. 

Lipophilicity of ligands (18a-h) with PTX is similar. 

Ligands (18a-h) have higher gastrointestinal absorption 

than PTX as can be seen in the fig. 1C. This implies that 

these ligands can be taken as candidates for oral ingestion. 

Because of extensive screening, the ligands (18a-h) have 

no Lipinski violation while PTX structure has two. In the 

data of ADMET given in the table S1 in supplementary 

information, lipophilicity (log P values, iLOGP, XLOGP3 

and WLOGP) determines cell permeation with higher 

values implying better membrane penetration. Molecular 

size, defined by molecular weight and heavy atom count, 

controls BBB permeation and metabolic stability. Polarity 

(topological polar surface area, TPSA) evaluates 

solubility in H2O. High polarity resists passage through 

nonpolar bio-membranes. Solubility (ESOL Log S and 

Silicos-IT LogSw) ensures adequate bioavailability, as 

compounds need to be soluble enough to reach 

therapeutic levels yet not so soluble that they are rapidly 

excreted. Flexibility (rotatable bonds) influences binding 

conformations, excessive flexibility might reduce binding 

stability. Lastly, unsaturation in molecule contributes to 

structural rigidity. Higher rigidity enhances binding 

stability but may hinder fitting into the binding site.  
 

Docking 

Docking of ligands (18a-h) and PTX in pocket (A) gave 

docked adducts for the MD run. The Swiss Dock facility 

(http://www.swissdock.ch) automatically sets up the 

receptor protein and ligand. Swiss Dock allows local 

docking inside a pre-determined binding pocket. In 

contrast, blind docking is performed on all of the available 

sites on the entire protein. Swiss Dock tool functions on 

EADock DSS docking software. The calculation 

algorithm creates favorable 5000-15000 binding modes 

within 2Ao in pocket, ranked in descending order. The 

solvent effects are based on the FACTS implicit solvation 

model. Docking analysis is carried out in the 

CHARMM22/27 all-H force field (FF). During 

calculation, PDB structure of the protein is divided into 

protein and non-protein parts. The protein part is further 

decomposed into CHARMM segments. SwissDock itself 

derives the CHARMM topology, parameters and 

coordinates, from the Mol2 file of the ligand using the 

Merck molecular force field (MMFF). The dihedral 

angles and bond lengths are retained while the charges are 

taken from MMFF. Van der Waals parameters are picked 

from the closest types of atom in CHARMM22 (Croitoru, 

2021). This is followed by user defining three docking 

preset modes i.e. very fast, fast and accurate. The binding 

energies of Naloxegol, and derived ligands (18a-h), and 

PTX in the pocket (A) from docking are given in table S2 

in supplementary information, along with clusters 

(pocket) and elements (binding mode). Ligands (18a-h), 

gave good level of docking resultant binding energies in -

7.5 to -9.5 Kcal/mol range.  Lower binding energy 

suggests a stronger ligand-protein interaction, increased 

inhibitory activity and stability of the ligand-protein 

adduct. PTX showed binding energy of -9.25 Kcal/mol. 

All the ligands (18a-h) and PTX showed no ionic 

interaction. The details of 2D interactions are given in 

table S3 in supplementary information. The trend 

indicates increase in binding energy as the chain length 

increases from n=0-7, interaction between the drug and 

the beta-tubulin becomes stronger.  
 

MD  
Docked conformations of ligands (18a-h) and PTX was 

run on Gromacs package (Dolatkhah et al., 2017) for a 

period of 10 ns. MD run on pre-docked conformation 

transformed static model to a dynamic one over time as 

the ligand is positioned into energetically favorable 

configuration within the binding site. From MD run we 

extracted the MD related properties descriptors (fig. 2 and 

fig. S3-S6 in supplementary information). From the MD 

Table 9: Final scores of ligands (18a-h) and PTX. 
 

Ligand 

Name 

[-CH2-

CH2-O-]n 

Score 1: Ligand 

Dynamic 

Properties 

Ligand 

Name 

[-CH2-

CH2-O-]n 

Score 2: 

Interaction 

Energies 

Ligand 

Name 

[-CH2-

CH2-O-]n 

Score 3: 

Impact on 

Protein 

18b 1 -2.492 18c 2 -2.156 18a 0 0.214 

18c 2 -2.304 18h 7 -2.030 18d 3 0.346 

18e 4 -2.166 18f 5 -1.822 18b 1 0.444 

PTX  - -1.892 18e 4 -1.801 18c 2 0.466 

18a 0 -1.650 18g 6 -1.789 PTX   0.472 

18d 3 -1.513 18b 1 -1.708 18g 6 0.782 

18f 5 -0.962 PTX   -1.598 18e 4 0.861 

18g 6 -0.595 18a 0 -0.708 18h 7 1.216 

18h 7 -0.510 18d 3 -0.043 18f 5 1.254 

 

http://www.swissdock.ch/
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related properties, further descriptors were calculated to 

give one numerical value to a dynamic range of data (fig. 

3 and fig. S7-9 in supplementary file). RMSD measures 

the changing distance between the atoms of the ligand and 

binding site during simulation. A lower average value or 

standard deviation of RMSD indicates a stable ligand and 

ligand-backbone structure during MD run, leading to 

higher efficacy of drug. Average or standard deviation of 

RMSD of backbone shows changes in protein structure 

upon ligand binding. Higher variability might have a 

connection with multiple drug resistance (MDR). Average 

and standard deviation of RMSD of ligand-backbone 

evaluates the stability of the ligand-protein complex 

relative to their original position. Consistent position is 

desirable for sustained binding. Similarly, RMSF assesses 

the flexibility of the ligand atoms. Lower average and 

standard deviation values of RMSF indicate less 

fluctuation leading to more consistent interactions with 

the target protein. Standard deviation of RoG of ligand 

evaluates the change in size of the ligand over 10 ns. 

Stable size of ligand implies stable interaction with target 

protein. Standard deviation of RoG of protein and ligand-

protein indicates changes in size of protein and ligand-

protein complex. Less change in size indicates stable 

ligand-protein interaction. Standard deviation of SASA of 

ligand measures the change in surface area of ligand 

accessible to solvent present in surroundings. Stable 

values mean ligand is not changing its solvent interactive 

profile. Standard deviation of SASA of protein measures 

the change surface area of the protein available to interact 

with solvent molecules or the ligand. To understand the 

nature and strength of the dynamic ligand-protein 

interactive properties ETotal was calculated as sum of EJ 

(Van Der Waal strength) and EC (electrostatic 

interactions). We also measured the number and strength 

of H-bonds between ligands and protein. Hydrophobic 

interaction of ligand with the hydrophobic sites of the 

protein was also measured.   
 

Validation of descriptors through R2 in QSPR 
QSPR plots of descriptors of MD properties are given in 

fig. 3 and fig. S7-S9 in supplementary information. The 

R2>1 values in QSPR plots validated the MD properties 

related descriptors to be dependent upon chain length [-

CH2-CH2-O-]n (table 1) and thus to be used in calculation 

of scoring functions that can rate ligands (18a-h) against 

PTX. In QSPR plots of average and standard deviation of 

RMSD (fig. 3) of ligand and backbone, increasing [-CH2-

CH2-O-] units exhibited higher flexibility leading to 

unstable binding interactions. High R2 (0.90, 0.60) values 

for the QSPR of average RMSD of the ligand and 

backbone (0.40, 0.60) show strong correlation between 

chain length and ligand and backbone flexibility, but not 

the ligand-backbone indicated by the lower R2 values 

(0.003, 0.005) showing that the complex remains stable 

and not capable of contributing to scoring calculations. 

Ligands (18a-h) displayed more stable interaction than 

PTX. The RMSD descriptors of ligand contributed to 

scoring function 1 related to ligand dynamic flexibility, 

while the backbone RMSD contributed to scoring 

function 3 related to protein stability. Derivative (18c) had 

better stability compared to PTX in all ligand, backbone, 

and ligand-backbone RMSD. The scoring function 1 

further included RMSF related descriptors of ligand such 

as average, standard deviation, number of peaks above 

average, and maximum RMSF (fig. S7 in supplementary 

information). The correlation between these descriptors 

and the chain length (n) was validated by higher R2 values 

(0.86, 0.84, 0.92 and 0.40 respectively) and an increase in 

chain length increased the RMSF, decreasing the stability 

of ligand-protein interactions. Ligand (18c) was again 

more favorable, compared to PTX. The RoG (fig. S8 in 

supplementary information) of ligand also contributed to 

scoring function 1. The average and standard deviation of 

RoG of ligand exhibited a strong correlation with the 

chain length with R2 (0.80, 0.80). Smaller chain lengths 

showed less changes in RoG compared to PTX, 

suggesting a stable ligand-protein interactions, compared 

to higher chain lengths. Lower R2 values for average and 

standard deviation of RoG of protein, ligand-protein 

(0.01, 0.01, 0.02 and 0.02) imply weaker relationship 

between chain length and protein or ligand-protein 

volume, hence were not considered in scoring functions. 

High R2 (0.93) for the QSPR of average SASA (fig. S8 in 

supplementary) of the ligand showed its dependence upon 

chain length, it contributed to scoring function 1. QSPR 

of Average SASA of protein against chain length (n) 

showed low R2 (0.0012) values.  
 

The R2 of QSPR of average Lennard-Jones (ELJ) (0.29), 

Coulombic (EC) (0.40), ETotal (0.40) and standard 

deviation of Etotal (0.39) demonstrated correlation with 

chain length (n) (fig. S9 in supplementary information). 

More negative values corresponded to more favorable 

interactions. Shorter chain lengths exhibited higher 

interaction energies compared to PTX, suggesting 

stronger binding affinities compared to longer chains 

indicating favorable conformational entropy and effective 

intermolecular binding forces within the pocket. Ligand 

(18c) showed the most favorable interaction energies 

across ELJ, EC and ETotal compared to PTX. Binding 

energy profile, H-bonding and hydrophobic interactions 

contributed to interaction scoring function 2. R2 values for 

total and average H-bonds exhibited relationship with 

chain length (0.31, 0.13) (fig. 9). Longer chains showed 

increased number of H-bonds because of higher number 

of H-bonds accepting O atoms. Shorter chains such as 

ligand (18c) because of having fewer O atoms wielded 

fewer H-bonds compared to PTX. This could result in 

more selective or nonspecific interaction profile, 

minimizing off-target effects. R2 of average minimum 

distance and standard deviation (0.21, 0.17) of 

hydrophobic interaction showed correlation with chain 

length as well (fig. S8 in supplementary information). 

Shorter chain lengths such as in ligand (18c) resulted in 

stronger hydrophobic interactions.  
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Ligand scoring functions 

Normalization scaled the descriptors of variable 

magnitudes to one range for comparison across ligands 

(18a-h) and PTX. This was required because MD 

calculated properties and their further descriptors had 

different scales and units. Principal Component Analysis 

(PCA) and weight/loading transformed normalized values 

into a set of linearly uncorrelated variables known as 

principal components (Jolliffe and Cadima, 2016). The 

first components found major variance in the dataset, 

providing representation of ligand-protein interactions. 

Using the weights from PCA analysis, scoring of ligands 

provided a quantitative measure for potential 

effectiveness of ligands as a β-tubulin inhibitor in terms 

of following three scoring functions (table 2). 

 

Scoring function 1 (ligand dynamic properties) 
This scoring function included descriptors of RMSD, 

RMSF, RoG and SASA of ligands. Ligand (18a-c) with 

n=0-2 showed stable interaction with the β-tubulin 

compared to PTX. Longer chain ligands (18d-h) with 

chain length n=3-7 have lower scores, implying decrease 

in binding stability. In comparison, PTX is in the middle 

of the list. Increasing the chain length of the ligands 

initially leads to better scores upto n=2 after which the 

performance begins to decline.  

 

Scoring function 2 (Interaction energy) 

This scoring function is composed of ETotal, EJ, EC, H-

bonds and hydrophobic interaction between ligands and 

protein. Ligands (18a-c) with n=0-2 showed better 

electrostatic, Van der Waals, H-bonding and hydrophobic 

interactions than PTX. As the chain length increases in 

ligands (18d-h), H-bonds and hydrophobic interactions 

start to weaken, suggesting that longer chains might 

hinder binding due to increased flexibility.  

 

Scoring function 3 (Ligand-protein) 
Ligands that significantly alter the dynamics and 

conformation of tubulin could promote MDR, known as 

MDR inducers, such as PTX. Scoring function 3 consisted 

of Backbone and Ligand-Backbone RMSD.  Ligands 

(18a-c) indicated fewer changes in structure of β-tubulin. 

As chain length increased, there was change in protein or 

Ligand-Protein structure. 

  

Scoring functions 1, 2 and 3 revealed that ligand (18c) 

with n=2, demonstrated superior attributes compared to 

PTX in terms of structural stability, binding affinity with 

β-tubulin, and its impact on stability of the protein. 

 

This scoring method, because of being dependent upon 

MD, is more accurate than existing static or single-point 

energy calculations methods such as molecular (MM) and 

quantum mechanics (QM) (Sheikh et al., 2020; Sheikh et 

al., 2022) that simulate the system at a single point in 

time, while realistic biological interactions are dynamic in 

nature involving changes in molecules over time. As a 

result, static methods are less accurate in evaluating 

ligand-protein interactions. In future, this dynamic scoring 

method can be used to compare any new ligands with 

existing commercial ones in terms of enhanced 

performance. This scoring method is highly flexible as by 

incorporating additional MD related properties and their 

descriptors, method can be fine-tuned further to evaluate 

any kind of performance desired from ligands such as 

superior binding attributes, stable interaction with protein, 

and impact of ligand on the protein etc. 

 

CONCLUSION 
 

Our primary goal was to identify an ideal β-tubulin 

interactive microtubule disassembly inhibitor for PTX’s 

drug pocket (A) using extensive screening and scoring 

system. The VS gave a list of probable molecules which 

were further filtered for less ADMET and Lipinski 

violations, BBB non-permeability and non-efflux by Pgp 

analyses. Among the found ligands, Naloxegol derivatives 

fitted in the pocket (A) better than PTX itself while 

fulfilling the desired drug attributes. Ligand (18c) with [-

CH2-CH2-O-]n=2 chain, gave the best scores over PTX, in 

all three functions, indicating less flexibility and 

interaction energies with lesser impact on the protein 

structure (reduced MDR). Its oral bioavailability, no 

ADMET violations, impermeability to the BBB and 

resistance to Pgp efflux make it a potential candidate. 

Easy synthesis of ligand (18c) shows its viability for 

development as a commercial drug. We used a new 

scoring method based on MD simulation to rank 

optimized ligand (18c) higher than both PTX and 

Naloxegol. QSPR (R2) between MD descriptors and [-

CH2-CH2-O-]n chain length validated that the descriptors 

used in scoring functions. Thus through this new dynamic 

scoring method, ligand (18c) turns out to be worth 

pursuing for retrosynthesis, characterization, in vitro and 

in vivo analysis.  

 

ACKNOWLEDGMENTS 
 

School of Interdisciplinary Engineering and Sciences 

(SINES), National University of Sciences and 

Technology (NUST), Pakistan.  

 

REFERENCES 
 

An X, Zhang W, Rong C and Liu S (2023). 

Understanding Ramachandran plot for dipeptide: A 

density functional theory and information theoretic 

approach study. Chin. J. Chem., 70(3): 243-252.  

Batool M, Ahmad B and Choi S (2019). A structure-based 

drug discovery paradigm. Int. J. Mol. Sci., 20(11): 

2783.  

Cermak V, Dostal V, Jelínek M, Libusova L, Kovar J, 

Rosel D and Brabek J (2020). Microtubule-targeting 



Hamdullah Khadim Sheikh et al 

Pak. J. Pharm. Sci., Vol.37, No.5, September 2024, pp.949-959 959 

agents and their impact on cancer treatment. Eur. J. 

Cell Biol., 99(4): 151075.  

Cheng Z, Lu X and Feng B (2020). A review of research 

progress of antitumor drugs based on tubulin targets. 

Transl. Cancer Res., 9(6): 4020.  

Croitoru A (2021). Additive CHARMM36 force field for 

nonstandard amino acids. J. Chem. Theory Comput, 

17(6): 3554-3570.  

Dolatkhah Z, Javanshir S, Sadr AS, Hosseini J and 

Sardari S (2017). Synthesis, molecular docking, 

molecular dynamics studies, and biological evaluation 

of 4H-chromone-1,2,3,4-tetrahydropyrimidine-5-

carboxylate derivatives as potential antileukemic 

agents. J. Chem. Inf. Model., 57(6): 1246-1257.  

Grosdidier A, Zoete V and Michielin O (2011). Swiss 

dock, a protein-small molecule docking web service 

based on EADock DSS. Nucleic Acids Res., 39(2): 

W270-W277.  

Gudimchuk NB and McIntosh JR (2021). Regulation of 

microtubule dynamics, mechanics and function through 

the growing tip. Nat. Rev. Mol. Cell Biol., 22(12): 777-

795.  

Jolliffe IT and Cadima J (2016). Principal component 

analysis: A review and recent developments. Philos. 

Trans. Royal Soc. A., 374(2065):  

Jonathan EC, Conrad CH and Thomas EF (2015). 

RRDistMaps: A UCSF Chimera tool for viewing and 

comparing protein distance maps, Bioinformatics 

31(9): 1484-1486.  

Lemkul JA (2019). From Proteins to Perturbed 

Hamiltonians: A suite of tutorials for the GROMACS-

2018 molecular simulation package [Article v1.0]. 

Living J Comp Mol Sci., 1(1): 5068-5068.  

Liu H, Gruber CW, Alewood PF, Moller A and 

Muttenthaler M (2020). The oxytocin receptor 

signaling system and breast cancer: A critical review. 

Oncogene, 39(37): 5917-5932.  

Potlitz F, Link A and Schulig L (2023). Advances in the 

discovery of new chemotypes through ultra-large 

library docking. Expert Opin. Drug Discov., 18(3): 

303-313.  

Sabe VT, Ntombela T, Jhamba LA, Maguire GE, 

Govender T, Naicker T and Kruger HG (2021). Current 

trends in computer aided drug design and a highlight of 

drugs discovered via computational techniques: A 

review. Eur. J. Med. Chem., 224: 113705.  

Sardar H (2023). Drug like potential of Daidzein using 

Swiss ADME prediction: In silico approaches. 

Phytonutrients, 2(1): 2-8.  

Sheikh HK, Arshad T, Habib U, Merajoddin M, 

Mohammad ZS, Usman R and Hasan M (2020). 

Docking analysis of aryl derivatives of diepoxide 

alkylating agents. Pak. J. Pharm. Sci., 33(5): 2017-

2021.  

Sheikh HK, Arshad T, Habib U, Mohammad ZS, Ahmed 

M and Hasan M (2022). Colorimetric chromophoric 

rapid detection of SARS-Cov-2 through breath 

analysis. Pak. J. Pharm Sci., 35(1): 157-160.  

Singh N, Chaput L and Villoutreix BO (2021). Virtual 

screening web servers: Designing chemical probes and 

drug candidates in the cyberspace. Brief Bioinform., 

22(2): 1790-1818.  

Waghray D and Zhang Q (2018). Inhibit or evade 

multidrug Resistance P-Glycoprotein in cancer 

treatment. J Med Chem., 61(12): 5108-5121.  

Wang Q, He J, Wu D, Wang J, Yan J and Li H (2015). 

Interaction of α-cyperone with human serum albumin: 

Determination of the binding site by using discovery 

studio and via spectroscopic methods. J. Lumin., 164: 81-

85. 


