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Abstract: Hypertrophic cardiomyopathy (HCM) is a genetic heart disorder that can lead to sudden cardiac death. Current 

treatment strategies, such as implantable cardioverter-defibrillators, exhibit limitations in impeding disease progression. 

Despite the identification of several pathogenic genes, the complex mechanisms underlying HCM remain unclear. This 

study aims to identify novel pathogenic genes and critical biomarkers for HCM using network-based bioinformatics 

analysis, with the potential to discover therapeutic targets for pharmaceutical interventions. Gene expression data from 

119 HCM patients and 55 healthy donors were analyzed using differential gene expression (DEG) analysis, followed by 

gene ontology (GO), KEGG and Reactome pathway enrichment studies. A protein-protein interaction (PPI) network was 

constructed to identify hub genes and their interactions, with a focus on potential drug targets. We identified a key gene 

module, with TNNT1 emerging as a critical hub gene. TNNT1 was found to significantly influence cardiac development 

and contribute to HCM pathogenesis. Our findings suggest that TNNT1’s role in regulating cardiac contractility could 

provide a foundation for developing new therapeutic agents targeting this pathway. This study provides novel insights 

into the molecular mechanisms of HCM and identifies TNNT1 as a potential biomarker for early screening and a 

promising target for pharmaceutical therapies. The identification of TNNT1 offers opportunities for personalized 

medicine approaches, which could facilitate the development of drugs aimed at modulating its expression and mitigating 

disease progression in HCM patients. 
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INTRODUCTION 
 

As a common genetic cardiovascular disease, 

hypertrophic cardiomyopathy (HCM) exhibits a genetic 

prevalence ranging from 1:500 to 1:200 [1,2]. It is 

generally considered an inherited condition resulting from 

mutations in 19 pathogenic genes, including MYH7, 

MYBPC3, MYL2, MYL3, TPM1, TNNT2, TNNI3, 

ACTC1, CSRP3, FHL1, PLN, ACTN2, CRYAB, FLNC, 

MYOZ2, MYH6, TNNC1, TRIM55 and TRIM63 [3-6]. 

With the advancement and widespread application of 

gene detection technology, gene screening has been 

applied to HCM clinical diagnosis and identification of 

high-risk groups carrying specific gene mutations. 

Nevertheless, only about 30% of the probands show a 

sarcomere mutation that is categorized as pathogenic or 

suspected to be disease-causing in the clinical diagnosis 

of HCM [7,8]. The pathogenesis of HCM remains 

enigmatic, particularly with regard to the signal pathway 

and regulatory network between genes. 

 

In the past decades, microarray technology has been 

extensively utilized for gene mutation screening. 

Bioinformatics analysis assists in the identification of 

differentially expressed genes (DEGs) and functional 

pathways associated with the mechanism of HCM. 

However, independent microarray analysis and the 

restriction of sample sizes result in elevated false-positive 

rates, hindering the attainment of accurate outcomes. 

Thus, in this research, three mRNA microarray datasets 

were obtained and examined from the Gene Expression 

Omnibus to identify the DEGs between 115 HCM 

patients and 55 healthy donors. Subsequently, gene 

ontology (GO) enrichment, Kyoto Encyclopedia of Genes 

and Genomes (KEGG), and Reactome pathway were 

analyzed by constructing a visualization network of DEGs 

and hub genes. This visualization has contributed to a 

more profound comprehension of the molecular 

mechanisms and progression of HCM. 
 

MATERIALS AND METHODS 
 

Transcriptional expression profiling processes 

NCBI-GE (http://www.ncbi.nlm.nih.gov/geo) is a no-cost 

public repository that stores transcriptional expression 

profiles [9]. We collected gene expression profiles of 

HCM and healthy myocardial tissues from three datasets: 

GSE36961, GSE32453 and GSE1145. Data from 

GSE36961 were obtained using the GPL15389 platform 

(Illumina HumanHT-12 V3.0 expression bead chip) from 

106 HCM and 39 donor myocardial tissue samples. 

Similarly, date from GSE32453 were obtained using the 

GPL6104 platform (Illumina humanRef-8 v2.0 expression 

bead chip) from 8 HCM patients and 5 healthy donor *Corresponding author: e-mail: chenjiyandoctor@163.com 

mailto:chenjiyandoctor@163.com
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myocardial tissue samples. The GSE1145 data was 

acquired from the GPL570 platform (Affymetrix Human 

Genome U133 Plus 2.0 Array), with 5 HCM and 11 

healthy myocardial tissues analyzed. 
 

Standardization and elucidation of DEGs 

The process of DNA microarray analysis started with 

preparing and standardizing the raw biological data to 

remove noise and ensure its accuracy. The robust multi-

array average analysis algorithm of the R.limma software 

package was used for data correction, standardization, and 

summarization. Identified the DEGs between HCM 

samples and normal myocardial tissues under 

experimental conditions [10]. Parameters such as fold 

change, Benjamini and Hochberg's false discovery rate 

(FDR), and adjusted P-value (adj.P) were utilized to filter 

DEGs, aiming to minimize false positives. Removed or 

averaged the probe sets without corresponding gene 

symbols or genes with more than one probe set. Genes 

with absolute values of logarithmic fold change (log2FC) 

>0.5 and P-value <0.05 were deemed to display 

significant differences between groups. Venn software 

(https://bioinfogp.cnb.csic.es/tools/venny/) was used to 

analyze raw data in TXT format to identify common 

DEGs in the three datasets. DEGs with log2 FC < 0 were 

considered down regulated, while those with log2 FC >0 

were considered upregulated. 
 

GO enrichment and pathway analysis of DEGs 

GO is a pivotal bioinformatics instrument for the 

annotation of genes and the analysis of their biological 

processes [11]. The KEGG website 

(https://www.kegg.jp/) is a crucial database resource that 

facilitates comprehension of intricate functions and 

biological systems by analyzing extensive molecular data 

generated through high-throughput experimental methods 

[12]. Reactome (https://reactome.org/) is a freely 

available and open-source database that is manually 

curated and reviewed by experts. It offers a pathway 

database that provides intuitive bioinformatics tools for 

visualizing, interpreting, and analyzing pathway 

knowledge. This database supports a range of 

applications, including genome analysis, systems biology, 

basic and clinical research, modeling, and education [13]. 
 

The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) (http://david.ncifcrf.gov) 

(version 6.8) is a comprehensive online bioinformatics 

tool that brings together biological data and analysis 

resources. It offers comprehensive annotation information 

on gene and protein functions, enabling users to extract 

significant biological insights [14]. DAVID facilitates the 

visualization of DEGs enrichment in Biological Process 

(BP), Cellular Component (CC), Molecular Function 

(MF), and other biological pathways (P-value <0.05). 
 

Protein-Protein Interaction (PPI) network and module 

analysis of DEG-encoded proteins and PPIs are 

performed using the online database STRING (Version 

11.0) (http://STRING-db.org) [15]. Interactions with a 

composite score exceeding 0.4 are deemed statistically 

significant. Cytoscape (version 3.7.1) is a freely available 

bioinformatics software tool utilized for displaying 

molecular interaction networks [16,17]. The Molecular 

Complex Detection (MCODE) plugin in Cytoscape 

(version 1.5.1) is used to cluster and identify densely 

connected regions within a network by analyzing its 

topology. MCODE criteria include an MCODE score 

≥10, degree cut-off = 2, node score cut-off = 0.2, 

maximum depth = 100, and K score = 2 [18]. Biological 

Networks Gene Ontology tool (BiNGO) (version 3.0.3) is 

employed to analyze and visualize the GO enrichment of 

nuclear genes [19]. 
 

Hub genes selection and analysis 

We employed Cytoscape's plugin cytoHubba (version 0.1) 

to select and analyze the hub genes [20]. Hub genes with 

a Density of Maximum Neighborhood Component 

(DMNC) score greater than 0.95 were identified for 

further analysis of their co-expressed genes via the 

STRING online platform. The STRING interactome was 

analyzed with a confidence score cutoff of 0.900. We 

collected tissue-specific PPI data from DifferentialNet 

(http://netbio.bgu.ac.il/diffnet/), which delineates the 

differential PPIs across human tissues [21]. 
 

ChIP-seq data of transcription factors or chromatin 

regulators, along with differential gene expression data, 

were integrated using the Binding and Expression Target 

Analysis (BETA) software (http://cistrome.org), inferring 

target genes. Three key functions were designed in 

BETA: inferring the factor’s target genes, predicting 

whether the factor exerts an activating or repressive role, 

and identifying the motif of the factor along with its 

collaborators, which may influence the factor’s regulatory 

function. Target genes and transcription factors were 

obtained from ENCODE ChIP-seq data. Using the BETA 

Minus algorithm, we only considered predicted regulatory 

potential scores less than 1 and peak intensity signals less 

than 500 [22]. 
 

Analysis of transcription factor-gene (TF-gene) 

interactions was conducted using the BETA online 

platform. We excluded genes already proven to be hub 

genes to identify new hub genes. The cloud-based 

application WebMeV (http://mev.tm4.org/) was utilized 

to analyze, visualize, and categorize extensive genomic 

data, with a focus on microarray data and RNASeq. The 

hierarchical clustering of the newly identified hub genes 

was constructed using WebMEV [23]. 
 

Annotation of TNNT1 

Expression Atlas (https://www.ebi.ac.uk/gxa/home) is a 

freely accessible scientific tool that allows users to 

discover data on gene and protein expression. It provides 

detailed information regarding the levels and distribution 

of RNA and proteins in various species under different 

biological circumstances, including cell types, tissues, 

https://bioinfogp.cnb.csic.es/tools/venny/
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diseases, and developmental phases. Expression Atlas was 

used to investigate the distribution of TNNT1 in human 

tissues [24]. The Human Protein Atlas 

(https://www.proteinatlas.org/) is a freely accessible 

database that integrates diverse omics data, including 

systems biology, transcriptomics, mass spectrometry-

based proteomics and antibody-based imaging, mapping 

all human protein biology in organs, tissues and cells 

[25]. We applied the Human Protein Atlas to depict the 

atlas of TNNT1. Reatcome was used to construct the 

molecular mechanism model of TNNT1 transcripts in 

myocardial tissue. Integrating the alterations of TNNT1 

expression in HCM myocardial tissue samples with the 

previous studies of TNNT1, we analyzed the possible 

mechanism of TNNT1 action in HCM. The analysis 

suggested the prospects of TNNT1 biomarkers in the 

screening, diagnosis and treatment of HCM. 
 

RESULTS 
 

Identification of DEGs in HCM 

Three micro array datasets, GSE36961, GSE32453, and 

GSE1145, were downloaded from the Gene Expression 

Omnibus database. The GSE36961 dataset contained 106 

HCM samples and 39 healthy samples. The GSE32453 

contained 8 HCM and 5 healthy samples and the 

GSE1145 contained 5 HCM and 11 healthy samples. The 

probes were converted to the corresponding gene symbols 

based on the platform's annotation. The limma software 

package of R language was used to extract gene 

expression values from each myocardial sample. Box 

plots were generated to illustrate the distribution of raw 

read counts (fig. 1A). A total of 119 HCM myocardial 

tissues and 55 healthy myocardial tissues were subjected 

to gene expression analysis, resulting in the extraction of 

gene expression values for 665, 0891 genes.  
 

The sum of reading counts from all features of each 

sample was plotted (fig. 1B). PCA was used to transform 

high-dimensional data into lower dimensions (fig. 1C). 

Density plots against log2 of reading counts were used to 

display the distribution of counts in each group (fig. 1D). 

Diagnostic plots summarized the standard deviation 

versus mean measures of reads for each gene (fig. 1E). 

Heatmap visualization analyzed RNA expression in three 

groups of HCM and healthy samples (fig. 2A). Volcano 

plots showed differentially expressed genes identified in 

HCM versus healthy groups, with the light red dots 

indicating significantly upregulated genes and the light 

blue indicating significantly down regulated genes (fig. 

2B). Venn diagram software identified common DEGs 

across the three datasets, detecting a total of 316 DEGs, 

including 141 down regulated and 175 upregulated genes 

in HCM samples (fig. 2C). 
 

GO enrichment analyses of DEGs in HCM 

GO enrichment analysis of 316 DEGs combined with 19 

confirmed pathogenic genes was visualized (fig. 3A). The 

results showed that significantly enriched BP terms of 

analyzed genes were mainly associated with anatomical 

structure morphogenesis, muscle filament sliding, heart 

process, and regulation of hydrolase activity. The 

significantly enriched CC terms were primarily linked to 

the sarcomere, myofibril and I-band cytoplasm. The 

significantly enriched MF terms of DEGs were associated 

with cytoskeletal protein binding, protein binding, and 

actin-binding structural constituent of muscle (fig. 3B). 

 

The most significant module was identified based on the 

PPI network with 16 nodes and 110 edges (fig. 3C). Light 

red items represented the upregulated genes, bright blue 

items represented the down regulated genes, and light 

green items represented the identified pathogenic genes. 

  

Construction of PPI network and analysis of modules 

The PPI network of DEGs was constructed and the 

pathogenic genes were subsequently confirmed (fig. 3C). 

The most significant module was identified by MCODE 

(fig. 4A). Furthermore, the performance and visualization 

of GO enrichment analysis of the most significant module 

were conducted by utilizing the BiNGO plugin of 

Cytoscape (fig. 4B-4D). 

 

Selection and analysis of Hub genes 

The DMNC score of 16 hub genes is displayed in fig. 4E. 

We identified 13 genes with DMNC scores exceeding 

0.95. Subsequently, these 13 genes - MYOZ2, TNNI3, 

TNNC1, TNNT2, TPM1, MYBPC3, TNNT1, ACTC1, 

ACTN2, MYH6, MYL3, MYH7 and MYL2 were 

subjected to further analysis. 

 

Under non-tissue-specific conditions, the enrichment 

results of GO, KEGG and Reactome pathways were 

analyzed using the STRING online platform. The visual 

interaction network of these genes, along with their co-

expressed genes, was constructed and examined (fig. 5A). 

The degree centrality and between ness centrality of the 

interaction network are shown in fig. 5B. In the co-

expression network, genes such as ACTN2, TPM1, 

MYL2, MYH6, MYL3, TNNI3, MYBPC3, TNNT2, 

TNNT1, TNNC1, ACTC1, MYH7, MYL1, TCAP, 

MYL4, TPM4, TPM2, MYH8 and TPM3 exhibited a 

degree greater than 10. The visualization of the results is 

shown in the bubble plot, where the between ness 

centrality score is positively proportional to the bubble 

size (fig. 5C). The enrichment results of GO, KEGG, and 

Reactome pathways are illustrated in fig. 5D. The results 

of GO analysis indicated that significantly enriched BP 

terms were related to actin filament-based movement, 

wound healing, blood coagulation, and coagulation. The 

significantly enriched CC terms were mainly associated 

with contractile fibers, myofibrils, actin cytoskeleton, and 

sarcomeres. The significantly enriched MF terms were 

primarily associated with cytoskeletal protein binding, 

actin binding, and calmodulin binding.  
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KEGG pathway analysis revealed enrichment in focal 

adhesion, regulation of actin cytoskeleton, HCM, dilated 

cardiomyopathy and leukocyte transendothelial migration. 

Reactome pathway analysis indicated enrichment in 

muscle contraction, striated muscle contraction, platelet 

degranulation and platelet activation, aggregation and 

signaling (fig. 5E). 

 

 

Fig. 1: Overall information of three microarray datasets, GSE36961, GSE32453 and GSE1145, was visualized 

respectively. (A) Distribution of raw read counts. (B) The sum of the reading counts for all features of each sample in 

GSE36961 (left panel), GSE32453 (middle panel) and GSE1145 (right panel) datasets. (C) Principal component 

analysis (PCA) using all identified genes for normal group (blue) and HCM group (red). The PCA plots of GSE36961 

(left panel), GSE32453 (middle panel) and GSE1145 (right panel) datasets were presented respectively. (D) The 

distribution curves of estimated insert size for each of GSE36961 (left panel), GSE32453 (middle panel) and GSE1145 

(right panel) datasets. (E) Diagnostic plots of the relationship between standard deviation and mean value of reads in 

each gene sample. Diagnostic plots of GSE36961 (left panel), GSE32453 (middle panel) and GSE1145 (right panel) 

datasets were presented respectively. 
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Fig. 2: The expression profiles of the coding genes of GSE36961, GSE32453 and GSE1145 were shown respectively. 

(A) Heatmaps of the expression levels of coding genes expressed in HCM and healthy group from GSE36961 (left 

panel), GSE32453 (middle panel) and GSE1145 (right panel) datasets. Each row represents a gene, and each column 

represents a sample. (B) Volcano plots illustrating differentially expressed genes between HCM and healthy group from 

GSE36961 (left panel), GSE32453 (middle panel) and GSE1145 (right panel) datasets. The red dots denote 

significantly upregulated gene expression, and the blue dots denote significantly down regulated gene expression. The 

point size reflects absolute fold change. (C) The Venn diagram of DEGs shows the selected DEGs in the gene 

expression profiles of three datasets, GSE36961, GSE32453 and GSE1145. Three datasets show 316 gene overlaps. 
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Fig. 3: Differential genes were subject to GO enrichment analysis and network visualization analysis. (A) GO 

enrichment analysis of 316 DEGs combined with 19 confirmed pathogenic genes. (B) Visualization of GO enrichment 

analysis of 316 DEGs combined with 19 confirmed pathogenic genes. (C) The PPI network of DEGs constructed using 

Cytoscape. The most significant module obtained from the PPI network with 16 nodes and 110 sides was shown. Light 

red items represented the upregulated genes, bright blue items represented the down regulated genes, and light green 

items represented the identified pathogenic genes. 
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Fig. 4: Identification of the most significant module and analysis of its gene network. (A) Using MCODE to identify 

the PPI network with 16 nodes and 110 sides as the essential module (left panel). The MCODE score of genes from the 

most significant module is listed (right panel). (B) The biological process analysis of the genes involved in the most 

significant module constructed using BiNGO. The color depth of the node refers to the adjusted p-value of the 

ontology. The size of the node refers to genes related to ontology. P<0.01 is considered statistically significant. (C) The 

cellular component analysis of the genes involved in the most significant module constructed using BiNGO. (D) The 

molecular function analysis of the genes involved in the most significant module constructed using BiNGO. (E) 

Screening out the 13 most crucial hub genes using the Cytoscape software plugin cytoHubba. 
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Fig. 5: The 13 most critical hub genes were subjected to co-expression network and enrichment analysis. (A) The hub 

genes and its co-expressed genes analyzed by STRING. The nodes in the bold blue outline represent the hub genes. 

Purple nodes represent co-expressed genes. (B) Genes with node degree >10 and their between ness centrality scores in 

the co-expression network of fig. 5A were listed. (C) The bubble chart showing the degree centrality score and between 

ness centrality score of genes with node degree >10 in the co-expression network of fig. 5A. The abscissa represents a 

gene, the ordinate represents degree centrality score and bubble size represents the between ness centrality score. (D) 

The enrichment analysis of GO, KEGG pathway and Reactome pathway of the 13 hub genes. (E) FDR of the 

enrichment after negative logarithm transformation. 
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Fig. 6: Tissue-specific (left ventricle) gene co-expression network and enrichment analysis of the 13 most critical hub 

genes are shown. (A) The 13 hub genes and their co-expression genes analysis based on the Differential NET database. 

Each sphere represents a gene. The red sphere represents the nuclear gene, and the yellow-brown sphere represents the 

co-expression gene. (B) List of the genes with node degree >10 and them between ness centrality scores in the co-

expression network of fig. 6A. (C) The bubble chart showing the degree centrality score and between ness centrality 

score of genes with node degree >10 in fig. 6A. The abscissa represents a gene, the ordinate represents degree centrality 

score, and bubble size represents the between ness centrality score. (D) The tissue-specific enrichment analysis of GO, 

KEGG pathway and Reactome pathway of the 13 hub genes. (E) FDR of the tissue-specific enrichment after negative 

logarithm transformation. 
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Fig. 7: Transcription-factor gene interaction of the 13 hub genes were analyzed. (A) The transcription-factor gene 

interaction of the 13 hub genes based on ENCODE ChIP-seq data. (B) List of the genes with node degree >10 and their 

between ness centrality scores in the interaction network of fig. 7A. (C) The bubble chart showing the degree centrality 

score and between ness centrality score of genes with node degree >10 in fig. 7A. The abscissa represents a gene, the 

ordinate represents degree centrality score, and bubble size represents the between ness centrality score. (D) The TF-

gene enrichment analysis of GO, KEGG pathway and Reactome pathway of the 13 hub genes. (E) FDR of the TF-gene 

interaction network after negative logarithm transformation. 
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Fig. 8: Information of TNNT1 was further annotated. (A) The expression level of TNNT1 in HCM and normal 

myocardium. (B) Relative expression of TNNT1 in HCM and normal group from GSE36961, GSE32453, and 

GSE1145 datasets shown in heatmaps. Expression level for TNNT1 is displayed by a color range from blue (low) to 

orange (high). (C) The expression profile of the hub genes and its co-expression gene in human tissue based on The 

Human Protein Atlas (only partial genes shown).  (D) Immunofluorescence staining showing that TNNT1 transcripts 

localized in nucleoplasm, cytoplasm and Golgi body. (E) The TNNT1 expression pattern in cells according to 

immunofluorescence staining. Light green region indicates the expression site of TNNT1. (F) Schematic diagram 

showing the role of TNNT1 products in myocardial contraction and the molecular model of energy conversion. (G) 

Mechanism diagram of TNNT1 products participating in the biological model of myocardial contraction. Blue bold 

region indicates the site of TNNT1 products involved in the process of myocardial contraction. 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Moreover, the Differential NET database was utilized to 

analyze the co-expression network of hub genes in the left 

ventricular myocardium (fig. 6A). The degree centrality 

and between ness centrality of the interaction network are 

shown in fig. 6B. In the co-expression network, genes 

such as TNNT1, ACTN2, TPM1, ACTC1, TNNI3, 

MYOZ2, MYBPC3 and MYH7 with a degree greater than 

10, were represented in the bubble plot where the between 

ness centrality score is positively proportional to the 

bubble size (fig. 6C). The enrichment results of GO, 

KEGG and Reactome pathways are presented in fig. 6D. 

GO analysis showed that significantly enriched BP terms 

of analyzed genes were related to actin filament-based 

movement, striated muscle contraction and signal 

transduction in response to DNA damage. The 

significantly enriched CC terms were primarily linked to 

sarcomeres, myofibrils, and the actin cytoskeleton. The 

significantly enriched MF terms were associated with 

transcription coactivator activity, actin binding and 

cytoskeletal protein binding. KEGG pathway analysis 

indicated enrichment in HCM, adrenergic signaling in 

cardiomyocytes, cardiac muscle contraction, dilated 

cardiomyopathy and viral carcinogenesis. Reactome 

pathway analysis revealed enrichment in striated muscle 

contraction, muscle contraction, cell cycle checkpoints, 

and regulation of APC/C activators between G1/S and 

early anaphase (fig. 6E). 

 

The Gene Regulatory Network demonstrated a broad 

regulatory relationship between hub genes in TF-gene 

interaction (fig. 7A). The degree centrality (node degree 

>10) and between ness centrality score of each gene were 

shown in fig. 7B. Genes such as TNNI3, TNNT1, TPM1, 

MYBPC3 and TNNC1, with a degree greater than 10, are 

represented in the bubble plot, where the between ness 

centrality score is positively proportional to the bubble 

size (fig. 7C). The enrichment results of GO, KEGG, and 

Reactome pathways are illustrated in fig. 7D. GO analysis 

indicated that significantly enriched BP terms of analyzed 

genes were related to the regulation of transcription DNA-

dependent and RNA metabolic processes. The 

significantly enriched CC terms were mainly associated 

with the nucleus, nuclear chromatin and nucleoplasm. The 

significantly enriched MF terms were primarily associated 

with DNA binding, sequence-specific DNA binding, and 

transcription regulation. KEGG pathway analysis revealed 

enrichment in transcriptional misregulation in cancer, 

adrenergic signaling in cardiomyocytes, Huntington's 

disease, HCM and dilated cardiomyopathy. Reactome 

pathway analysis indicated enrichment in striated muscle 

contraction, generic transcription pathway, and 

transcriptional activity of the SMAD2/SMAD3: SMAD4 

heterotrimer (fig. 7E). 

 

Identification of new genes 

Among the 13 genes identified in the most significant 

module, TNNT1 was notable since it has not been 

previously reported in association with HCM. We 

analyzed the significance of TNNT1 within this key 

module. In the MCODE analysis, TNNT1 exhibited a 

node degree of 12. Its degree centrality and between ness 

centrality scores in non-tissue-specific co-expression 

networks were 29 and 168.0364, respectively. In the gene 

co-expression network specific to left ventricular tissue, 

TNNT1 demonstrated the highest scores in the network, 

with a degree centrality of 59 and a between ness 

centrality of 11244.32. In the network of transcription 

factor gene interactions, the degree centrality and between 

ness centrality scores of TNNT1 were 57 and 2912.306, 

respectively, ranking it second only to TNNI3. 

 

Furthermore, we observed that TNNT1 expression in 

HCM patients was significantly higher compared to that 

in donors (fig. 8A). Hierarchical clustering analysis 

conducted using WebMeV indicated that TNNT1 

expression could differentiate HCM samples from healthy 

samples (fig. 8B). Tissue-specific enrichment analysis 

revealed that TNNT1 is predominantly expressed in 

myocardial and skeletal muscle tissues (fig. 8C). The 

presence of TNNT1 transcripts in the human cell line 

MCF7 was confirmed through immunofluorescence 

staining (fig. 8D), showing localization in the 

nucleoplasm, cytoplasm and Golgi apparatus (fig. 8E). 

TNNT1 encodes troponin T type 1, which forms a part of 

the troponin complex and is situated on sarcomere 

filaments (fig. 8F). This complex is crucial in regulating 

striated muscle contraction in response to intracellular 

calcium levels (fig. 8G). 

 

All of these findings collectively suggested that TNNT1 

may play a significant role in the development and 

progression of HCM. 

 

DISCUSSION 
 

HCM is a prevalent genetic heart condition worldwide. It 

is widely acknowledged that a comprehensive and 

systematic early screening program for HCM remains to 

be developed. As we all know, there is still no established 

early screening program for HCM. The efficacy of 

pharmacologic interventions remains uncertain, and the 

surgical intervention continues to be the only effective 

treatment [26]. Since the initial report on HCM decades 

ago, the research on the formation and progression of 

HCM have been extensively developed, including the 

most recent multi-omics studies. However, the incidence 

of sudden cardiac death caused by HCM has not 

decreased, and the positive rate of gene screening has 

remained low [27,28]. As is the case with other genetic 

diseases, HCM is characterized by abnormal gene and 

protein expression [29]. A substantial body of research 

has demonstrated that HCM results from the 

accumulation of cellular and molecular aberrations, 

including epigenetics, transcriptome, micro RNA, 
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proteomics, and metabonomics [30]. The primary purpose 

of multi-omics research is to identify biomarkers capable 

of diagnosing HCM in its early stages. It aims not only to 

identify the heterogeneity of HCM but also to discover 

the potential molecular commonalities at various points in 

time. HCM exhibits notable heterogeneity at the 

molecular level, involving many protein-level and genetic 

changes. Consequently, this disease can be represented by 

a carefully selected set of candidates [31,32].  

 

With the advancements in bioinformatics, numerous 

molecular markers have been discovered for HCM, which 

have the potential to serve as diagnostic and prognostic 

indicators. However, many of these markers have not yet 

been independently validated. Furthermore, there has 

been a lack of comparative analysis among these 

biomarkers to pinpoint candidates for further research and 

screening. While the molecular characteristics of HCM 

have the potential to serve as indicators for detecting and 

tracking disease progression in an early stage, a 

comprehensive understanding of these characteristics 

remains to be studied. 

 

Diverging from traditional single genetic or cohort 

studies, we undertook a comprehensive analysis of three 

micro array data sets encompassing 115 HCM and 55 

normal myocardial tissue samples. A total of 316 

differential genes in HCM were identified in our study, 

including 175 upregulated genes and 141 down regulated 

genes. The GO analysis of DEGs, performed using 

DAVID, revealed that HCM-regulated genes were 

primarily involved in processes such as anatomical 

structure morphogenesis, muscle filament sliding, cardiac 

processes, regulation of hydrolase activity, and 

actomyosin structure organization. 

 

We further conducted pathway enrichment analysis using 

the KEGG database to assess the functional significance 

of these DEGs and to identify pathogenic genes. We 

employed the STRING database and Cytoscape software 

to construct a visual gene interaction network, which 

comprised 334 nodes and 682 edges. Following MCODE 

modeling, the most significant module was identified, 

characterized by 16 nodes (16 genes), 110 edges, an 

average node degree of 13.8, an average local clustering 

coefficient of 0.939, an expected edge number of 2, and a 

PPI enrichment P-value of less than 1×10^-16. This gene 

cluster is a promising target for the screening and early 

diagnosis of HCM. 

 

To identify the hub genes within this significant module, 

we initially screened for genes with a node degree greater 

than 10. Subsequently, Cytoscape's plugin Hubba was 

employed to filter these genes, and those with DMNC 

scores greater than 0.95 were designated as hub genes for 

this module. Ultimately, thirteen genes were identified 

through this process. 

 

We analyzed three interaction networks of hub genes: a 

non-tissue-specific PPI network, a left ventricular-specific 

PPI network, and a TF-gene interaction network. The 

enrichment results from the STRING and DifferentialNet 

databases were compared, revealing several similarities. 

These included two BP terms, the top five CC terms, and 

three MF terms, which were actin binding, cytoskeletal 

protein binding and structural constituent of muscle. Two 

enriched KEGG pathways were HCM and Dilated 

Cardiomyopathy, and two enriched Reatcome pathways 

were Striated Muscle Contraction and Muscle 

Contraction. 

 

BP pathway enrichment in the left ventricular 

myocardium indicated that proteins encoded by hub genes 

were involved in regulation of muscle contraction, striated 

muscle contraction, and signal transduction in response to 

DNA damage. MF pathway enrichment analysis revealed 

that hub genes also participated in protein domain-

specific binding and transcription coactivator activity in 

the left ventricular myocardium. These results highlighted 

the diverse functions of hub gene transcripts, 

underscoring the functional diversity resulting from 

differential gene expression. 

 

Transcription factors are critical regulators of gene 

expression, playing pivotal roles in almost all cellular 

regulatory processes, including differentiation, 

proliferation, survival and apoptosis. Moreover, genetic 

diseases and complex conditions such as HCM are often 

associated with transcription factor regulation, involving 

feed-forward loops and other network motifs that regulate 

cellular transcription in an interconnected manner. Hence, 

utilizing regulatory data on transcription factors and hub 

genes can facilitate the elucidation of key driver genes in 

HCM, potentially leading to novel therapeutic strategies 

for its treatment. 

 

A gene regulatory network was constructed to investigate 

the factors driving differential expression. Within the TF-

gene regulatory network, five genes with a node degree 

greater than 10 were identified: TNNI3, TNNT1, TPM1, 

MYBPC3 and TNNC1. The differential expression of 

these genes during transcription is likely responsible for 

the various clinical manifestations observed in HCM. 

Additionally, the diversity of clinical phenotypes in 

HCM, despite similar genetic backgrounds, is likely 

attributable to differences in the transcription of these 

genes. 

 

Enrichment analysis of BP pathways suggested that 

mutations in hub genes could lead to abnormal regulation 

of nucleobase-containing compound metabolic processes, 

subsequently affecting DNA translation, RNA 

transcription, and protein biosynthesis. Targeting these 

specific BP pathways in drug development may help 
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manage the incidence of pathogenic mutations in HCM 

carriers. Enrichment analysis of CC pathways indicated 

that HCM-related variations predominantly occur in the 

nucleus, suggesting that focusing on RNA variation in the 

nucleus could be crucial in HCM etiology studies. 

Enrichment analysis of MF pathways revealed that 

transcription factors closely associated with hub genes 

primarily involved DNA binding and RNA polymerase II 

promoter activity. Further investigation of these MF 

pathways could elucidate the molecular mechanisms 

underlying HCM. KEGG pathway analysis indicated that 

dysregulation may impact adrenergic signal transduction 

in cardiomyocytes. The Reactome pathway analysis 

suggested a possible relation of HCM to the SMAD4 

heterotrimer. 

 

After excluding the currently known pathogenic genes, 

we identified a novel gene, TNNT1, that is closely 

associated with hypertrophic cardiomyopathy (HCM) in 

the core module of our analysis. In the non-tissue-specific 

PPI network, TNNT1 exhibited a centrality score of 29 

and a betweenness score of 168.0364. Notably, in the left 

ventricular tissue-specific PPI network, TNNT1 emerged 

as the most critical gene, with a centrality score of 59 and 

a betweenness score of 1244.32. These results indicate 

that TNNT1 has a significant impact on HCM, potentially 

aiding in the screening and early diagnosis of the disease. 

 

As a subunit of the troponin complex, troponin T (TnT) 

along with tropomyosin, troponin I (TnI), and troponin C 

(TnC), attaches the troponin complex to actin filaments. 

This is essential for controlling calcium (Ca²+) levels 

during muscle contraction [33]. This precise interaction 

between Ca²+ and the thin filament regulatory complex is 

vital for coordinating the normal systolic rhythm essential 

for cardiac function. Research indicates that the 

composition of isoforms within the myofilament 

regulatory complex undergoes modifications during the 

heart development and in response to heart disease [34]. 

 

Vertebrates possess three distinct TnT genes: slow 

skeletal muscle TnT (ssTnT), fast skeletal muscle TnT, 

and cardiac TnT. Each of these three genes encodes 

specific isoforms with unique expression patterns and 

functional roles. The TNNT1 gene is responsible for 

encoding muscle-specific TnI and TnT subtypes, which 

are arranged in three tandem pairs within the invertebrate 

genome. Notably, TNNT1 expression is subject to 

alteration during mammalian cardiac development 

[35,36]. Whole-mount in situ hybridization (WISH) 

studies utilizing anti-TNNT1 RNA probes have shown 

critical TNNT1 expression in the cardiac outflow tract 

and the developing interventricular groove of mouse 

embryos at embryonic day 9.5 (E9.5). The expression of 

TNNT1 extends to the cardiac apex at E10.5, notably 

within the left ventricle. Nevertheless, expression 

diminishes in the outflow tract at E11.5, becoming 

predominantly localized to the ventral side of the 

interventricular groove by E12, with diminished presence 

in the left ventricle and complete absence in outflow tract 

cells from approximately E12.0. At E12.5, the expression 

of TNNT1 in the interventricular septum expands laterally 

until E14.5, with notable expression in the ventral aspect 

of the left ventricle and enhanced expression in the apical 

region of the right ventricle, while cells in the outflow 

tract remain negative. Furthermore, at E12.5, the 

expression of TNNT1 is prominent in the atrium, 

especially in the left atrium.  

 

Previous research has investigated the function of TNNT1 

in mammalian development and cardiogenesis through 

targeted disruption of its cardiac homolog TNNT2, 

revealing that loss of TNNT1 results in embryonic 

lethality by approximately E10, typically with absent 

cardiac activity. Nevertheless, in the outflow tract of all 

E10 and approximately half of E9 TNNT2 -/- (cTnT -/-) 

embryos, pulsatile cells were observed, underscoring the 

critical role of TNNT1 expression in this region for 

normal cardiac morphology and function [36]. These 

findings, combined with our network analysis, suggest 

that myocardial hypertrophy in HCM, particularly the 

level of blockage in the left ventricular outflow tract in 

individuals with hypertrophic obstructive cardiomyopathy 

could potentially be associated with TNNT1 over 

expression.  

 

The cardiac Troponin I (cTnI, TNNI3) and slow skeletal 

muscle Troponin T (ssTnT, TNNT1) genes are closely 

linked. In vitro promoter analyses have revealed that the 

KB-2.2 to -5.4 upstream region of the TNNT1 gene 

overlaps with the 3' region of the TNNI3 gene, 

encompassing the primary enhancer activity essential for 

high-level transcription of TNNT1 [37]. A study 

involving genetically engineered mouse lines 

demonstrated that targeted deletion in embryonic stem 

cells not only excises the entire TNNI3 gene but also a 

significant part of the 5' enhancer region of TNNT1, 

confirming the genomic integration of the cTnI and ssTnT 

genes. 

 

Further assessments of troponin I isoform gene 

expression, transfer, and function in adult cardiac 

myocytes transduced with vectors containing rat cTnI or 

ssTnI expression cassettes have been conducted. By the 

sixth day post-gene transfer, the substitution rate of 

endogenous cTnI by ssTnI exceeded 90% and there are no 

detectable changes in other sarcomere protein expression 

patterns or chemometric properties. Moreover, neither the 

expression levels of ssTnI nor cTnI had any effect on the 

total troponin I content, indicating a stoichiometric of TnI 

in the sarcomere was replaced. The epitope-tagged TnI 

confirmed the efficiency and precise subcellular 

localization of the newly expressed TnI within the cardiac 

myocytes, with over 95% of cardiomyocytes 
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demonstrating specific localization to the myocardial 

filaments. 

 

At lower replacement levels, the Ca²+ sensitivity of 

tension significantly increased (P<0.01), underscoring the 

dominant influence of ssTnI in regulating myofilament 

contraction. SDS-PAGE analysis indicated that the ratio 

of ssTnI to cTnI was 27.5% on the second day post-

transduction, increasing to 67% by the fourth day. 

Additionally, testing with a second troponin I antibody 

(Fitzgerald) showed that ssTnI replaced approximately 

29% of cTnI by the second day post-transduction. The use 

of two distinct troponin I antibodies (chemical and 

Fitzgerald) along with SDS-PAGE further substantiated 

that the range of TnI replacement varied between 14% 

and 29% on the second day, closely aligning with 

previous reports of a 90% replacement in terms of Ca²+ 

sensitivity of tension. 

 

Intriguingly, it has been demonstrated that the transfer of 

ssTnT into adult cardiomyocytes induces two notable 

alterations in the mechanical function of Ca²+ activation. 

Firstly, the threshold for Ca²+ activation and the molecular 

synergy in these cardiomyocytes are diminished. 

Specifically, in myocardial cells expressing ssTnT, 

tension development is evident at PCA levels between 7.0 

and 6.5, whereas, at similar Ca²+ levels, cardiomyocytes 

expressing cardiac TnI (cTnI) are fully relaxed. Secondly, 

ssTnT-expressing cardiomyocytes show significantly 

reduced desensitization to Ca²+-activated tension under 

acidic pH conditions. Furthermore, no differences were 

observed in the standardized maximum Ca²+ activation 

tension between cardiomyocytes expressing ssTnT and 

those expressing cTnI, indicating that ssTnT gene transfer 

does not alter the peak mechanical properties of the 

myocardium. Notably, the expression of the ssTnT 

subtype is also crucial in reducing the pH sensitivity of 

the fetal rat myocardium [38,39]. These modifications 

align with the pathophysiological changes observed in 

HCM. 

 

However, the mechanisms of transcriptional regulation 

across the TnIc-TnTs locus remain elusive. Since the 

discovery of the globin gene cluster, the notion of 

controlling gene expression through a unified set of 

regulatory elements has served as a paradigm in the study 

of gene regulation. Classical models include the concept 

of a single chromatin domain or gene clusters forming 

loops, wherein shared distal enhancers target multiple 

promoters, supplemented by flanking insulator elements 

[40,41]. The TnIc-TnTs region is closely aligned with 

differentially expressed genes, exhibiting mutually 

exclusive expression patterns among adjacent genes. 

Nonetheless, detailed information on transcriptional 

regulation in this region is scant, with only the promoter 

of the cTnI gene being thoroughly examined [42,43]. A 

notable characteristic of this region is its compact 

architecture, which necessitates only proximal sequences 

to recapitulate many facets of endogenous gene 

expression. Studies on TnT genes in humans and mice 

have suggested that intergenic regions can drive 

expression in skeletal muscle cells in vitro. The inclusion 

of additional 5' sequences led to enhanced activity, 

hinting that elements regulating TnT expression in mice 

might also be embedded in the 3' end of the TnIc gene 

[44,45]. 

 

Despite these findings, it remains unclear which elements 

are essential for achieving the correct tissue specificity or 

developmental regulation required to drive substantial 

expression in cardiomyocytes (data not shown). Further 

studies have revealed that the human TnTs gene exhibits 

transient regional expression in the fetal heart and 

markedly reduced expression in the adult human heart, 

complicating the understanding of gene regulation in this 

area [46,47]. Therefore, introns or distal regulatory 

elements might be necessary for appropriate regulation. 

This finding challenges the traditional model previously 

outlined, suggesting that genes in this region may 

function as independent transcription units, which contain 

all necessary tissue-specific and developmental response 

elements within a compact proximal promoter, possibly 

alongside other elements situated within an intron. 

 

A number of theories have been postulated, and research 

has indicated that the promoter region of the TNNT1 

harbors numerous transcription factor binding elements 

common among genes expressed in myocardial tissues. 

Deletion analysis of the human gene promoter revealed 

that the sequence from -98 bp to +67 bp is sufficient to 

drive activity in myocardial cells. Animal studies further 

demonstrated that TNNT1 expression in the heart requires 

the GATA4-FOG2 transcription complex, corroborating 

our previous TF-gene interaction network analysis which 

linked the differential expression of TNNT1 in 

cardiomyocytes primarily to TNNT1 DNA binding and 

transcription initiation from RNA polymerase II 

promoters. It was also reported that the cis-regulatory 

element of the GATA4-FOG2 complex significantly 

influences heart-specific regulation of the TNNT1 gene. 

This finding was reached through the construction of a 

bacterial β-galactosidase (lacZ) fusion transgenic 

structure, revealing direct expression of TNNT1 

regulatory elements in bone and myocardial tissues. 

Consequently, we hypothesize that the GATA4, FOG2, 

and the GATA4-FOG2 transcription complex may be 

pivotal targets for gene editing and targeted drug 

development in HCM. 

 

In HCM, mutations or small molecules could potentially 

alter contractility via modifications to the Ca²+ sensitivity 

of myofilaments. However, subcellular biomarkers for 

myofilaments remain undeveloped. Although the link 

between TNNT1 and HCM is not fully elucidated, our 
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findings suggest that TNNT1 transcripts, which are 

restricted to myofilaments, reflect an increased expression 

pattern in HCM, indicative of the myofilaments' 

sensitivity to calcium. This finding suggests that TNNT1 

transcripts could serve as a biomarker for the progression 

and severity of HCM, representing a promising target for 

future therapeutic interventions. 

 

The objective of this study was to construct a gene 

network involving DEGs identified in both healthy and 

HCM tissues, initiating functional annotation of shared 

hub genes. However, this study is not without its 

limitations. Firstly, the sample size remains inadequate 

and can be increased in the future with the collection of 

additional samples. Secondly, while a variety of 

enrichment analyses and functional annotation were 

performed to elucidate the regulatory mechanisms of 

TNNT1 in HCM, these findings have yet to be confirmed 

in human myocardial tissues. Furthermore, although this 

study identified potential target gene TNNT1 based on 

three datasets containing a total of 115 HCM and 55 

healthy samples, the specific molecular mechanism of its 

effect on HCM needs to be verified by more experiments 

in the future. Meanwhile, the correlation between TNNT1 

and HCM needs to be supported by correlation analysis of 

more clinical data. In addition, given the absence of 

available inhibitors or activators for TNNT1, TNNT1-

targeted therapies for HCM should be explored through 

the lens of its downstream mechanisms. Therefore, future 

studies should concentrate on detailing the interactions 

between TNNT1 and HCM to clarify these mechanisms 

further. The subsequent research plan will be carried out 

in the following manner. The first step will be the 

detection of the frequency of TNNT1 mutation in the 

HCM population and the analysis of the clinical relevance 

between TNNT1 and HCM based on the collection of 

clinical data. Secondly, we will construct TNNT1-

overexpressed induced pluripotent stem cell-derived 

cardiomyocytes (iPSC-CMs) to detect the expression 

changes of cardiac hypertrophy-related genes. Thirdly, 

mice with cardiomyocyte-specific TNNT1 overexpression 

will be constructed to detect the physiological phenotype 

of cardiac hypertrophy and investigate the underlying 

mechanism. TNNT1 cardiomyocyte-specific knockout 

mice will be generated and induced cardiac hypertrophy 

by TCA to test whether TNNT1 can be used as a target 

for the treatment of pathological cardiac hypertrophy. 

 

In the future, we may face the following challenges in the 

clinical translation process. Firstly, currently there are no 

available inhibitors or activators of TNNT1. Therefore, to 

identify TNNT1-targeted drugs, it is necessary to start 

with drugs that target to downstream of TNNT1 or 

compete with TNNT1 at the site of action. Secondly, 

current models of drug research in the field of HCM are 

relatively limited. For example, induced pluripotent stem 

cell-derived cardiomyocytes (iPSC-CMs) is closely 

resemble human tissue. However, it is difficult to obtain 

and the sample size is limited [48]. Thirdly, the 

translation of TNNT1-targeted therapies to clinical 

applications is a time-consuming process. Given the 

absence of drugs that target TNNT1, the potential 

interactions with different classes of cardiovascular drugs 

are not considered. 

 

Our study not only identified TNNT1 as a novel 

biomarker for hypertrophic cardiomyopathy (HCM) but 

also highlighted its potential as a therapeutic target. The 

up-regulation of TNNT1 in HCM offers promising 

avenues for the development of targeted pharmacological 

interventions aimed at modulating the troponin complex, 

which could potentially prevent or mitigate the 

pathogenesis of HCM. Current treatment options for 

HCM, such as implantable devices and surgical 

intervention, carry significant risks and limitations. 

Consequently, there is a growing need for novel 

therapeutic strategies. At present, pharmacological 

mechanisms for the drug treatment of HCM mainly 

include the following aspects: (1) the regulation of 

myocardial cell metabolism; (2) ion channel inhibition; 

(3) antioxidant; (4) oxygen free radical scavenging; (5) 

induction of autophagy; (6) allosteric inhibition of cardiac 

myosin ATPase; (7) reduction of left ventricular fibrosis 

[49]. The identification of TNNT1 and its involvement in 

cardiac contractility present a novel opportunity to design 

drugs that specifically target the molecular pathways 

associated with this biomarker. Moreover, further studies 

into the development of TNNT1 pathway inhibitors or 

modulators could provide a new class of pharmacological 

treatments for managing HCM and reducing the risk of 

sudden cardiac death in affected individuals. This 

discovery also aligns with the broader goal of 

personalized medicine, as it offers potential for patient-

specific therapeutic approaches based on TNNT1 

expression profiles. 

 

CONCLUSIONS 
 

In conclusion, our study has achieved several notable 

objectives. We constructed an interaction network 

between HCM pathogenic genes and found the most 

significant module of pathogenic genes. Furthermore, we 

analyzed the mode of interaction between hub genes from 

bioinformatic visualization and found that TNNT1 may 

be a potential key factor in the pathogenesis and 

progression of HCM. 
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