Supplementary Data Table S1: In-vitro microbiological activities of derivatives against the selected gram positive, gram negatives and fungal species at concentrations 5, 10 and 20 µgmL-1 | 125 | | | | | | E. coli | | | P. asruginosa | | | |---|--|---|---|--|--|---|---|---|--|---|---| | i µgmL ⁻¹
15.37±0.13 | 10 µgmL ⁻¹
16.15±0.02 | -1 20 μgmL ⁻¹
02 20.37±0.15 | 5 µgmL ⁻¹
12.29±0.11 | 10 µgmL¹
14.32±0.17 | 20 µgmL ⁻¹
17.23±0.15 | 5 µgmL ⁻¹
15.14±0.08 | 10 µgmL ⁻¹
17.2±0.15 | 20 µgmL ⁻¹
20.18±0.2 | 5 μgmL ⁻¹
16.39±0.13 | 10 μgmL ⁻¹
20.09±0.06 | 20 μgmL ⁻¹
25.32±0.18 | | 7.32±0.14 *52.37 8.42±0.05 *44.64 10.18±0.1 *53.07 K. pneumonia | 10.17±0.12
*37.03
10.21±0.16
*39.26
11.35±0.19
*26.53 | 12 13.35±0.1
*34.46
16 12.26±0.2
*39.7
*29.17 | 7.27±0.18
*40.85
7.34±0.11
*40.08
10.24±0.16
*16.41
\$.ficoneri | 10.23±0.14
*28.56
10.33±0.11
*27.56
12.24±0.19
*14.17 | 12.36±0.04
*28.26
13.19±0.23
*23.58
14.44±0.01
*16.34 | 10.36±0.15
*31.57
10.19±0.12
*33.18
*126.56
*26.56 | 13.27±0.06
*22.85
12.18±0.24
*29.88
14.13±0.11
*18.56 | 15.13±0.17
*25.02
14.28±0.15
*29.66
17.17±0.14
*15.42 | 5.11±0.11
*68.82
10.33±0.08
*35.96
12.25±0.14
*24.05
B. subetits | 12.12±0.10
*39.67
14.24±0.2
*29.47
16.24±0.16
*19.56 | 14.32±0.21
*43.44
18.2±0.17
*28.35
18.21±0.15
*28.31 | | 5µg mL ⁻¹
10.32±0.23 | 10µg mL ⁻¹
12.4±0.04 | 20µg mL ⁻¹
1 16.1±0.07 | 5μg mL ⁻¹
10.3±0.22 | 10µg mL¹
14.33±0.23 | $20 \mu \mathrm{g \ mL}^{-1}$ 17.16 ± 0.23 | 5µg mL ⁻¹
14.27±0.19 | 10µg mL ⁻¹
15.27±0.13 | 20µg mL ⁻¹
18.31±0.09 | 5µg mL¹
16.22±0.21 | 10µg mL ⁻¹
18.12±0.09 | $20 \mu \mathrm{g \ mL^{-1}} \\ 22.28 \pm 0.22$ | | 10.31±0.15
0.1
14.2±0.21
*.40.18
16.24±0.2
*60.32
S. features | 15.27±0.1
*.23.15
17.28±0.2
*.41.29
18.32±0.1
*.49.08 | 1 20.14±0.18
*-25.09
2 20.38±0.14
*-26.43
1 20.24±0.17
*-25.56 | 7.41±0.06
*28.06
5.29±0.17
*47.78
9.23±0.08
*8.88 | 11.27±0.17
*21.35
12.26±0.16
*14.45
12.43±0.11
*13.26 | 13.37±0.1
*22.09
14.33±0.11
* 16.49
15.1±0.13
*12 | 10.27±0.14
*28.03
10.26±0.03
* 28.45
10.18±0.08
*29.01
Citrobacter sp | 12.36±0.18
*19.06
12.31±0.11
*19.33
12.27±0.19
*19.59 | 14.34±0.22
*21.68
14.36±0.11
*21.53
14.26±0.02
*22.08 | 5.33±0.24 * 67.14 0±0 *100 0±0 * 100 C. albicans | 93±0.02
*48.68
5.06±0.02
*72.47
5.16±0.02
*71.93 | 10.3±0.12
*53.77
9.23±0.13
*58.55
10.26±0.23
*53.93 | | Sμg mL-1
10.15±0.12 | 10µg mL ⁻¹
13.32±0.05 | 1 20µg mL ⁻¹
05 16.32±0.24 | 5μg mL ⁻¹
12.09±0.05 | 10µg mL¹
14.09±0.07 | 20μg mL ⁻¹
16.16±0.19 | 5μg mL ⁻¹
8.13±0.08 | $10 \mu \mathrm{g \ mL}^{-1}$ 10.13 ± 0.07 | $20 \mu \mathrm{g \ mL^{-1}}$ 14.15 ± 0.13 | 5μg mL ⁻¹
9.33±0.13 | 10µg mL ⁻¹
12.24±0.18 | 20µg mL ⁻¹
15.36±0.1 | | 9.19±0.07
*9.46
10.29±0.14
*_29
12.27±0.15 | 13±0.11
*90.24
13.32±0.27
*-0.45
14.13±0.06
*-6.59 | 14.31±0.23
*12.32
27 16.18±0.26
0.86
0.86
0.86 | 7.34±0.07
*39.29
9.09±0.13
*26.38
10.28±0.12
*16.96 | 10.21±0.14
*27.54
12.25±0.16
*13.61
13.37±0.13
*5.71 | 12.16±0.08
*24.75
15.1±0.02
* 6.91
16.2±0.06
*0.12 | 13.25±0.2
*-59.25
13.25±0.2
*-59.25
15.23±0.14
*-83.5 | 15.24±0.18
*48.39
15.24±0.18
*48.39
17.22±0.14
*-67.67 | 17.19±0.09
*-21.31
17.19±0.09
*-21.31
19.19±0.25
*-35.43 | 10.32±0.15
*-10.61
10.32±0.15
*-10.61
12.08±0.02
*-29.47 | 12.21±0.14 - 0.33 | 14.14±0.05
*6.85
14.14±0.05
*6.85
16.2±0.12
*-6.72 | Student's t-test (P<0.001), df = 4. mean±S.D, % ZI * indicates significance and -ve sign shows increase in activity. Fig S1: Synthesized Derivatives with 6k63 2D and 3D pic of G-D09 with 6k63 His 102 2D and 3D pic of Gemifloxacin (GMFX) with 6k63 Fig S2: Synthesized Derivatives with 3JWB 2D and 3D pic of G-D09 with 3JWB 2D and 3D pic of Gemifloxacin (GMFX) with 3JWB Fig S3: Synthesized derivatives with 1AI9 2D and 3D pic of G-D10 with 1AI9 Cly Ser Se