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Abstract: Background: Response surface methodology coupled with the design of experiments identifies the optimal
response surface function related to selected independent factors. Due to their rigid structures, they lack the learning
capability from the developed response function. In contrast, a more advanced artificial intelligence-based tool, artificial
neural network (ANN), offers an alternative to RSM-based regression methods. Objectives: This study was conducted to
investigate the combined application of experimental design and a neural computing framework for modeling and
optimization of a bilayer tablet with biphasic release of cinnarizine (CNZ) and domperidone (DOM), followed by in-silico
physiologically-based pharmacokinetic (PBPK) modeling. Methods: The experimental data from the trial formulations
supported by the central composite design (CCD) were trained using an artificial neural network. The predicted values of
the input variables (HPMC K4M, sodium carbonate, croscarmellose and magnesium stearate) targeting the output
responses (% drug release at lh, 6h, 12h, and friability) were cross-validated using the numerical and graphical
optimization technique of CCD. The in-silico PBPK modeling was used to measure relative bioavailability and simulate
in-vivo plasma profiles under fasting state through GastroPlus® software. Results: The optimum quantities for developing
a bilayer tablet —15% HMPC K4M, 3% sodium carbonate, 2% croscarmellose, and 1% magnesium stearate — were found
to be very similar by both the CCD and ANN models, with desirability values close to 1. Moreover, ANOVA revealed no
statistically significant difference between the optimized and predicted formulations. GastroPlus® assisted in the relative
bioavailability evaluation of the optimized bilayer formulation, with an immediate-release domperidone and an extended-
release cinnarizine layer, showing 89% and 81%, respectively. Conclusion: It is concluded that Al-powered modeling,
especially the integration of ANN, accelerates innovation, leading to faster and smarter optimization of pharmaceutical
formulations.
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INTRODUCTION them, CNNs are widely used for supervised learning of
images, while RNNs are preferred for voice recognition.
Kohonen networks, also known as self-organizing maps
(SOMs), are applied in various domains of information,
including speech recognition, classification, and clustering

(Wang et al., 2022b).

The advent of artificial intelligence has brought a
revolutionary impact, leveraging vast amounts of data that
surpass human efficiency. Precisely, Artificial intelligence
(AI) deals with such cognitive tasks that humans usually
manage. Machine learning (ML) is a specific field of Al

based on learning methods that enable machines to learn ~ Among the ANN techniques, the MLP is considered more

from external data sources, just as humans do. Based on
newly acquired knowledge, machine learning programs
enhance their ability to process (Wang et al., 2022b). An
artificial neural network (ANN) is an Al tool that
resembles the human brain's working (Makomere et al.,
2023). The multilayer perceptron (MLP), radial basis
function neural networks (RBFNNSs), convolutional neural
networks (CNNs), Kohonen networks, and recurrent neural
networks (RNNs) are a few familiar ANN models. Among

*Corresponding author: e-mail: aatka.ali@iqra.edu.pk

efficient for building and predicting models. It is based on
a feed-forward model composed of one input layer, one or
more hidden layers, and one output layer (Pham et al.,
2019). MLP's performance is its main advantage. The
complex problem can be predicted and analyzed using an
MLP, owing to its hidden layers, which possess problem-
solving capability. The classification of unknown patterns
is possible with the aid of known patterns that share the
same properties, because MLPs solve problems
probabilistically, providing approximate solutions to
complex problems (Ismail et al., 2023). In addition, "feed-
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forward" does not imply that signals cannot be processed
in the backward direction; rather, it indicates that the
network architecture is loop-free. The backpropagation
algorithm is also a key concept. Forward transmission of
the signal and backpropagation of the error gradient are the
two steps involved in training the backpropagation
algorithm. It means that the calculated results are
propagated from the input layer towards the output
direction along with the acquisition of error signals. All the
neurons in each layer receive the error signals from the
output towards the input direction, once the weights and
thresholds are calculated. All layers in MLP use the
backward-pass error signal and employ gradient descent to
recalculate each neuron's weights (Wang et al., 2022b).

Response surface methodology (RSM) is a statistical tool
that uses empirical models to evaluate the effects of input
variables on predefined output variables. The central
composite design (CCD) is among the most widely used
designs for fitting second-order models (Malenga et al.,
2022). In the current study, a physiologically-based
pharmacokinetic (PBPK) modeling software program is
also implemented to predict in-vivo drug performance.
PBPK software platforms are equipped with different
mechanistic absorption frameworks, such as GastroPlus® is
associated with Yu and Amidon's suggested
compartmental absorption and transit model (CAT) (Yu
and Amidon, 1999) that has been modified by
incorporating many parameters, like colon absorption and
is designated as advanced compartmental absorption and
transit (ACAT) model (Demeester et al., 2023). This model
comprises nine compartments that resemble the human GI
tract and can predict the rate and extent of absorption in a
similar manner (Lin et al., 2022). Based on physiological
and biochemical diversity relative to healthy adults, a
specific patient population can be built, and this virtual
population can undergo further clinical trial simulations.
Instead of performing a clinical trial, this strategy is
appropriate for determining drug disposition in geriatrics
(Vyas and Taft, 2025). PBPK modeling can expand the
evidence base for pediatric dose regimens by combining
with existing clinical pharmacokinetic data, which are
often limited in number (Freriksen et al., 2023).

The building and the accuracy of the PBPK models are
greatly affected by the unavailability of parameters. The
parameters required to build a PBPK model can be
categorized into physiological, drug-related, and
experimentally generated parameters. Body weight, tissue
perfusion rate, organ blood flow, tissue volume, and
cardiac output are some of the physiological factors.
Moreover, PBPK models are susceptible to factors related
to the drug, such as chemical-specific absorption,
distribution, metabolism, and excretion. Both crucial
factors for PBPK can be obtained through expensive,
lengthy experimental procedures. In addition, PBPK
modeling is limited by the lack of in vivo data (Huang et
al., 2024).
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The present study employs a Quality by Design (QbD)
approach based on RSM and a more modern machine
learning tool, i.e., an artificial neural network (ANN), to
optimize the formulation of a bilayer tablet containing
domperidone (DOM) and cinnarizine (CNZ). Cinnarizine
is a piperazine calcium Dblocker used to treat
cerebrovascular problems (Zhang et al, 2022).
Domperidone is a peripherally selective dopamine D2
receptor antagonist (Afzal et al., 2021). Motion sickness
can be treated with a combination of these drugs. Based on
clinical studies, the combination therapy of these
medications was found to be more effective than the
individual administration of each drug (Alam and Shakeel,
2024). Although research studies are available using the
hybrid ML-ANN and RSM-CCD frameworks to predict
predefined targets, the data lack information on the
implementation of these approaches in a fixed-dose
combination. The novelty of this work lies in integrating
both methods into a fixed-dose combination bilayer tablet
containing two different drugs with a dual-release profile,
thereby supporting the QbD approach.

MATERIALS AND METHODS

Cinnarizine and domperidone maleate were provided as a
gift sample from Aspin Pharma Pvt. Ltd. (Karachi,
Pakistan). Acetonitrile was procured from Tedia (Fairfield,
USA), ortho-phosphoric acid from BDH Chemicals, Ltd.
(Poole, England), trimethylamine and magnesium stearate
from Daejung chemicals and metals (Siheung-si,
Gyeonggi-do, Korea), and Potassium hydroxide was
purchased from Merck (Darmstadt, Germany).
Hydroxypropyl methyl cellulose (HPMC) K4M, potassium
dihydrogen phosphate, sodium carbonate, and PVP-K30
were procured from Sigma-Aldrich (Steinheim, Germany).
Avicel PH-101 and croscarmellose were obtained from
Avonchem (Cheshire, United Kingdom), and Iron oxide
yellow (E172) was procured from Evonik Industries
(Givaudan Roure, GmbH, Germany).

Experimental design for the CNZ and DOM
formulations

The RSM-based CCD was applied to statistically analyze
two factors per layer at five levels, i.e., +1, -1, 0, +a, and -
o (where o = 1.414), employing Design-Expert® (State-
Ease, 360 trial version, Inc., Minneapolis, MN 55413,
USA). The selected independent and dependent factors,
their levels, and the output responses, along with their
constraints, are compiled in table 1. The central composite
design based on randomization included four axial, four
factorial, and centre-point runs, each repeated quintuply, to
evaluate the method's repeatability. The experimental runs
were determined by 25+2k+no, where k and no denote the
numbers of independent variables and repetitions at the
centre point, respectively (Mazumdar et al., 2021). A total
of 13 trial batches of each extended-release cinnarizine
(ER) and immediate-release domperidone (IR)

Pak. J. Pharm. Sci., Vol.39, No.2, February 2026, pp.430-448

431



Al-driven ANN and RSM-CCD integrated optimization of cinnarizine-domperidone bilayer tablets: In-vitro evaluation and in-silico

formulations corresponding to F1-F13 and FDI1-FDI13,
respectively, were generated keeping k=2 and n=5 (Table
2).

Pre-compression and compatibility studies

The micrometrics studies were conducted to assess the
flow characteristics of all the trial batches generated by
CCD (Table 2) as per USP-NF specifications (USP-NF,
2022). A known quantity of the powder blend was weighed
into a 10ml graduated cylinder to determine the bulk
density, and the powder was mechanically tapped until a
constant volume was reached to determine the tapped
density. The following equations were used to calculate the
parameters, including tapped density (p;), bulk density (ps),

Carr's index, Hausner's ratio, and angle of repose.

Bulk densi _ Mass of powder(g) )
ulk density (pp) = Volume of powder(ml)

T d densi _ Mass of powder(g) @
apped density (py) = Tapped volume(ml)
Carr’s index = (pt;—pb) X 100 3)
t
, . Tapped density (pt)
Hausner's ratio = Bulk density (py) 4
Angle of repose (8) = tan™! % 5)

Where "h" and "d" are the height and diameter of the heap,
respectively.

The interaction between drugs with the polymer and
superdisintegrant was determined by Fourier transform
infrared (FTIR) spectrometry (Nicolet-6700, Thermo
Scientific, US) in the region of 4000-400 cm™. The
physical mixture of cinnarizine and HPMC K4M, as well
as domperidone and croscarmellose, at a 1:1 ratio was
analyzed (Rojek et al., 2023).

Preparation of the extended-release (ER) layer of CNZ

The extended-release (ER) layer was prepared by the wet
granulation method using a single-punch machine
(Erweka, Korsch, Frankfurt, Germany) fitted with an
eccentric B-type biconvex punch and die set (11.5 mm
diameter). All the ingredients (Table 2) were accurately
weighed and passed through the stainless steel sieve (mesh
no. 25) separately. The drug (CNZ), HPMC K4M, sodium
carbonate, microcrystalline cellulose, and iron oxide
yellow pigment were thoroughly mixed. The aqueous
granulating fluid of PVP-K-30 (5% w/w) was added to the
powder blend dropwise till a suitable wet mass was
obtained, followed by granulation through sieve 12. The
obtained granules were oven-dried at 60 °C for 1h and then

sieved through a 30 screen. The final dried granules were
blended with magnesium stearate before compression.

Preparation of the immediate-release (IR) layer of DOM
The granules for the immediate-release layer were
prepared using the same procedure as for the ER layer. The
accurately weighed ingredients (Table 2) were blended and
granulated with 10% (w/w) aqueous PVP-K-30, then oven
dried and sieved. Magnesium stearate was blended with the
granules prior to compression (Prajapati et al., 2009).

Preparation of a bilayer tablet of CNZ and DOM

The bilayer tablet formulation (B1) was prepared by the
double-compression technique using the optimized layers
of DOM and CNZ, with acceptable dissolution profiles.
Initially, the extended-release layer of CNZ granules was
fed into the die cavity and then compressed to achieve an
intermediate tablet with an average weight of £ 200 mg
using a B-type biconvex (11.5 mm diameter) single-punch
machine (Erweka, Korsch, Frankfurt, Germany). The
granules of the immediate-release (IR) layer were then
poured over the pre-compressed intermediate extended-
release layer, subsequently compressed to an average
weight of + 400 mg (Nguyen et al., 2021).

Post-compression quality control evaluation

Each trial and optimized formulations of both drugs (FD1-
FD13), (F1-F13), and (Bl) were subjected to quality
control evaluation. The weight variation and friability of
the tablets were determined by using an analytical balance
(Sartorius CP224S, Germany) and a Roche-type friabilator
(Erweka GmbH, Heusenstamm, Germany), respectively.
The diameter and thickness were measured using a vernier
caliper (Seiko, China). The hardness and disintegration
time of tablets were measured by a hardness tester
(Erweka, Germany) and a basket rack disintegration
assembly (Erweka ZT2, Heusenstamm, Germany),
respectively (USP-NF, 2022; Asrade et al., 2023).

In-vitro dissolution study and release kinetics

All the trial formulations were subjected to in vitro drug
release studies using the USP paddle-type apparatus
(Erweka GmbH 600, Heusenstamm, Germany). The tablets
were placed in hemispherical dissolution vessels
containing 900 mL of 0.1N HCI (pH 1.2) at 50 rpm. The
dissolution medium was maintained at 37+0.5°C and the
samples (10 ml) were drawn at regular time intervals (0.5,
1,2,3,4,5,6,7,8,9,10, 11 and 12 h) for ER tablets (CNZ)
while 1h (5, 10, 20, 30, 45 and 60 min) for IR tablets
(DOM). The same volume withdrawn each time was
replaced with fresh dissolution medium. All the samples
were filtered through a 0.45um Whatman filter paper and
the resultant filtrates were diluted. The samples of
cinnarizine and domperidone were analyzed by using a
UV-spectrophotometer (UV-1800, Shimadzu Corporation,
Kyoto, Japan) at 254nm (Kesharwani and Ibrahim, 2023)
and 284nm (Ardalkar et al., 2024) respectively.
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Table 1: Selection of factors, levels, responses and constraints of the extended and immediate release formulations for

CCD-based optimization

Variables Levels
Independent variables (Extended-release formulation, CNZ) Low High
Xi=HPMC K4M 5 25
X>= Sodium carbonate 3 5
Dependent Variables (Extended-release formulation, CNZ) Constraints
Y= Cumulative % drug Release in 1h 13.9%<Y1<20%
Y,= Cumulative % drug Release in 6h 50%<Y2<70%
Y;= Cumulative % drug Release in 12h 90%<Y3<100%
Independent Variables (Immediate-release formulation, DOM) Low High
X = Croscarmellose 1 3
Xo,= Magnesium stearate 0.5 1.5
Dependent variables (Immediate-release formulation, DOM) Constraints
Y= Cumulative % drug release in 1h 85%< Y 1<100%
Y= Friability 0%<Y2<1%
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Fig. 1: FTIR spectra (a) Pure API (cinnarizine) (b) Cinnarizine and polymer (HPMC K4M) (c) Pure API (domperidone)

(d) Domperidone and superdisintegrant (croscarmellose)

To examine the drug release mechanism from the ER
tablet, an Excel add-in program, DD solver, was used to
apply a model-dependent approach, including zero-order,
first-order, Higuchi, Hixson Crowell, and Korsmeyer
Peppas models, whereas first-order and Hixson Crowell
models were applied to examine the release profiles of IR
tablets (Magbool ef al., 2024).

Q¢ = Qo + K, t (Zero Order) (6)
Q; = Qoeiklt (First order) 7
Q; = kyt%S (Higuchi) (8)
1/3 13 _ ¢ (Hi
o~ —Q¢” = Kyct (Hixon Crowell) 9
M; /Mg, = Kjp,t™(Korsmeyer Peppas) (10)

Where, Q; = the amount of drug released at time (t), Q, =
the initial amount of drug released at time (t=0), K, = zero
order rate constant, k;= first order rate constant, ky =
Higuchi constant Kyc =Hixson Crowell constant, My/M, is
the fraction of drug release at time (t), k= kinetic constant
and n= diffusion exponent

Model-independent methods

The similarity in dissolution profiles of IR and ER tablets
of the trial formulations was assessed using the f, similarity
factor in DD solver, with 0.1 N HCI buffer (pH 1.2) as the
dissolution medium. Formulations were considered similar
in terms of dissolution profile if the calculated f, value was
> 50 (Diaz et al., 2016).
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Assay of the developed optimized formulation

[ A S B AR A AR BT S The assay of the optimized formulation (Bl) was
performed using a modified HPLC method as described by
Clark (Conemans, 2011). The HPLC system consisted of
an isocratic pump (LC-20AT, Shimadzu, Kyoto, Japan)
fitted with a C-18 column (ODS-H optimal Sum, 150 x 4.6
mm i.d.), UV-visible detector (SPD-20A, Shimadzu,

Avicel®
PH 101
(mg)

1
1
1
1
1
1
1
1
1
1
1
1
1

PVP
K30
(mg)
2
0
20
20
20
20
20
0
0
0
0

§ . a o Kyoto, Japan), auto-sampler (SIL-20 A gyr, Shimadzu,
é a9 ag s884a@0@q Kyoto, Japan), and a column oven (CTO-20A). Data
FrEFAR SRR TYIIAES acquisition and processing were performed using Lab
- - M Solutions software (version 5.65, Shimadzu Corporation).
9 The column oven was kept at ambient temperature, and the
% A =) pump was set to a flow rate of 1.3 ml/min with an injection
g \E/]e, S8gscnazsonanagg volume of 40 ul. A mixture of acetonitrile and buffer (pH
O = < <+ NN O F NN O T O+ . .
g2 H=Z o 3.3) at a 47:53 ratio was used as the mobile phase. The
e} buffer was prepared by adding orthophosphoric acid (750
pl) and triethylamine (approx. 150 pl) to distilled water,
a and the potassium hydroxide solution (10%) was used to
d Hocoaocaaadaanaaaonoa adjust the pH. The mobile phase was then filtered through
AT a 0.45pm membrane filter using a filtration assembly, and
" degassed in an ultrasonicator (Ultrasonic LC-10 H, Elma,
T o © Germany) for 15-20 minutes. The peaks of eluents were
N EE e anTwoe e S D99
T IESNRRRRRRRRRAAAA detected at 210 nm.
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M SE= - ) neural network (MLP-ANN) was applied to the
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L“j A Boccccoccoccccal Pro 18 software (SAS Institute .Inc.,North Carolina, USA)
o AME" T oo m s S s == S g (Navabhatra et al., 2021; Paneiro and Rafael, 2021). The
) g ANN model findings were also cross-validated against
‘_g £ . g graphical and numerical optimization of the RSM-based
258w Y CCD using Design-Expert® (Saleem et al., 2025). The
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. 3 v i .
o A g a bilayer tablet.
=] A
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(&8 2 by CCD for both ER and IR formulations. The ANN
2’ e | = a g models were crafted in three layers. The input layer of the
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Fig. 2: Cumulative % drug release vs. time profiles (a) IR formulations (DOM) (b) ER formulations (CNZ) (c) Standard
chromatogram of DOM and CNZ (d) Chromatogram of a optimized bilayer tablet (B1)

Fig. 3: MLP neural network topologies (a—c) ER formulations of CNZ with inputs (X: =HPMC K4M, X.=sodium
carbonate) and outputs %DR at 1h, 6h, and 12h, (d—f) IR formulations of DOM with inputs (Xi=croscarmellose,
X>=magnesium stearate) and outputs % DR at 60 mins and friability using 3, 4 and 5 hidden nodes respectively
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Table 5 Drug release kinetics of the ER (F1-F13) and IR (FD1-FD13) formulations using model-independent and dependent approaches
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Hixon Crowell

First order
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Hixon
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Higuchi
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64.31°

2

0.60
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1

FDI12

39.65
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2F7 formulation was considered as the reference formulation for the determination of the £ factor, owing to its quality control attributes in case of ER tablets, A1 (marketed product) was used

as the reference formulation for IR tablets. Values indicating asterisk (*) show similarity as per FDA recommendation ile., 50-100 (Altoum et al., 2024).

0.02

FD13 0.97

36.55

6.94

F13

The holdback procedure was used at a 0.3 (70:30) split by
selecting from the model launch menu, as it randomly
divides the dataset into training (70%) and testing (30%)
(Simdes et al., 2020; Wang et al., 2022a). The hidden
neurons and learning rate were examined using the squared
penalty method to determine the optimized ANN
architecture (Elsayed et al., 2021; El-Metwally et al.,
2023). The neural nodes were tested in the range of 3-5
(Paneiro and Rafael, 2021). The sum of squared errors
(SSE) and the 1% values were used to assess the predictive
ability and statistical significance of the ANN model
(Simdes et al., 2020).

Implementation of the desirability function for ANN-
based optimization

To obtain optimized formulations, the best node was
selected based on the maximum r? and minimum SSE. For
the selected node, a prediction profiler was computed using
the built-in model profiler in JMP® Pro 18, and the
desirability function for each response was applied based
on response limits (Harkat-Madouri et al., 2025). The
predicted formulations of both drugs, Fyred. ann (CNZ) and
Fpred. axny (DOM) models were formulated in JMP® Pro 18,
and the critical output responses were analyzed along with
other quality control attributes (Khan et al., 2023).

Implementation of the desirability function for CCD-
based optimization

The same experimental data sets were estimated by
numerical and graphical optimization of CCD based on the
desirability approach. The polynomial equations coupled
with quadratic terms were established by multiple linear
regression analysis (MLRA). At the 5% significance level,
the model terms' significance was determined (Akhtar et
al., 2024). The ramp and overlay plots were constructed to
present the design space and to predict the desired
quantities for optimal responses.

Analysis of variance for the comparison of optimized and
predicted formulations

To cross-validate, the optimized formulations, i.e., Fopt. ccp
(CNZ) and Fop ccp (DOM), suggested by employing
numerical and graphical optimization techniques, was
compared with Fprea. ann (CNZ) and Fpred. ann (DOM)
formulations assisted by a trained ANN model. The
proposed formulations were prepared in triplicate and
assessed for the output responses, which were subsequently
compared using one-way analysis of variance in SPSS
version 25 at the 5% significance level.

In-silico PBPK modeling

Model building

A PBPK model was developed using the built-in
'Advanced Compartmental Absorption and Transit'
(ACAT)® model in GastroPlus® software version 9.9
(Simulations Plus Inc., Lancaster, CA, USA) to estimate
Fopt CCD (CNZ) and Fopl. CCD (DOM)
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Table 6: Performance indices of the MLP-ANN architecture

Nodes Data set Generalized % drug release 1 h % drug release 6 h (Y2)
ER tablets 12 (Y1)
(CNZ) 12 SSE 12 SSE 12 SSE
3 Training 0.98 0.84 730.7 0.97 63.4 0.99 12.4
Testing 0.96 0.84 4.59 0.7 32.16 0.05 126.1
4 Training 1.00 0.87 58.4 0.98 36.77 0.97 35.2
Testing 0.90 0.86 14.7 0.83 52.04 0.83 62.4
5 Training 0.99 0.74 117.6 0.97 65.3 0.95 50.65
Testing 0.80 -2.06 104.1 0.80 21.7 0.67 43.1
Nodes Data set Generalized % drug release Friability
IR tablets r? 60 min (Y)) (Y2)
(DOM) r’ SSE r’ SSE
3 Training 0.4212 0.38 20.37 0.051 0.89
Testing 0.672 -0.02 37.93 0.681 .0063
4 Training 0.926 0.68 10.36 0.02 37.82
Testing 0.912 0.117 0.82 0.914 .0017
5 Training 0.797 0.77 7.5 -0.07 39.66
Testing 0.332 0.089 0.84 0.37 0.0124

*Node 4 is selected to generate the prediction profile as it has the overall highest r? value with minimum SSE
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Table 7: Analysis of variance for the fitness of the central composite design matrix of both extended-release (CNZ) and
immediate-release (DOM) formulations

Responses Model F-value p-value Model equations in terms of coded factors
Extended-release (CNZ) formulations
Y Quadratic 7.81 0.0088 Y-18.51-18.65A+0.80B-0.75AB+13.72A%-1.48 B2
Y, Quadratic 107.94 0.0001 Y2=64.00-17.06A+0.013B+1.25AB+6.65 A*+2.34B>
Y3 Quadratic 29.87 .0001 Y;=88.80-12.82A-2.35B-1.05AB-1.51A%+1.62B?
Immediate-release (DOM) formulations
Y Quadratic 4.07 0.0472 Y1=98.25+1.69A-4.26B+0.20AB-0.58 A%+1.65B?
Y; Quadratic 0.62 0.6892 Y=0.48-0.054A-0.28B+0.1AB+0.11A%+0.16 B?
Design-Expert® Software o Overlay Plot Design-Exper® Sofware Overlay Plot
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Fig. 7: Overlay plots obtained by graphical optimization exhibiting design space of (a) ER formulations (b) IR
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Table 8: ANOVA for the comparison of optimized and predicted formulations of both drugs originated from ANN and CCD

ER formulation®

Source of variation Sum of squares Difference Mean Square F- value p-value
Between groups 1.602 1 1.602 3.396 0.139
Within groups 1.887 4 0.472
Total 3.488 5
IR formulation®
Between groups 1.530 1 1.530 1.839 0.247
Within groups 3.329 4 0.832
Total 4.859 5

aGroup!: Fopt. cco (CNZ), Group 2: Fpred. ANN (CNZ) PGroup1: Fopt. ccp (DOM), Group 2: Fpred. ANy (DOM)

Table 9: Input parameters of both drugs for PBPK modeling

IR tablet (DOM)
Parameters Value Source

Molecular weight (g/mol) 425.92 ADMET predictor®
Log P 3.96 ADMET predictor®

pKa 11.36,8 ADMET predictor®
Perr(cm/sx1074) 1.55 ADMET predictor®

Ry, (Blood/plasma ratio) 0.8 ADMET predictor®
Fup(%) 3.92 ADMET predictor®
Precipitation time (s) 900 Gastroplus® standard
Diffusion coefficient (cm?/secx105) 0.64 ADMET predictor®
Drug particle density (g/ml) 1.2 ADMET predictor®

Physiology Fasted (Human) Experimental parameter
ASF (model) Opt log D SA/V 6.1 Absorption scale factor
Ki2(1/h) 1.52 PKPlus®
Kai(1/h) 0.25 PKPlus®
Vo(L/kg) 7.88 PKPlus®
ER tablet (CNZ)
Molecular weight (g/mol) 368.514 g/mol ADMET predictor®
Log P 5.6 ((Kesharwani and Ibrahim, 2023)
pKa 1.95,7.47 ((Kesharwani and Ibrahim, 2023)
Petr (cm/sx107%) 1.63 (Kesharwani and Ibrahim, 2023)
Rep (Blood/plasma ratio) 1 (Berlin et al., 2014)
Fup(%) 0.165 ADMET Predictor®
Precipitation time (s) 900 Gastroplus™ Standard
Diffusion coefficient (cm?/secx105) 0.62 ADMET predictor®
Drug particle density (g/ml) 1.2 ADMET predictor®

Physiology Fasted (Human) Experimental parameter

ASF (model) Opt log D SA/V 6.1 Absorption scale factor
CI (L/h) 5.02 PKPlus®
V(L/kg) 3.99 PKPlus®

The physiological and physicochemical parameters were
computed using the ADMET® predictor embedded in the
software and were also retrieved from the literature. The
plasma concentration-time profiles extracted from
previous studies were included in the PK Plus® module of
Gastroplus®. This module evaluated the input data using
one, two, and three-compartment models (Wang et al.,
2023).

Model evaluation and simulation

The developed model was evaluated by calculating fold
error (FE) for Cmax, Tmax, AUCo.inf, and AUCo.. The in-vitro
dissolution profiles of both drugs were entered, and a single

simulation was performed. Relative bioavailability was
also calculated for both drugs.

RESULTS

Pre-compression and post-compression studies

The findings of micrometrics studies complied with the
USP specifications mentioned in General Chapter <1174>
Powder Flow (USP-NF, 2022) and compiled in table 3,
while the results of post-compression quality control
evaluation were given in table 4, representing FD1-FD13
(IR formulations), F1-F13 (ER formulations), and Bl
(bilayer formulation). The FTIR spectra of individual drugs

442

Pak. J. Pharm. Sci., Vol.39, No.2, February 2026, pp.430-448



(Fig. 1a and 1c) along with the blended polymer (HPMC
K4M) and superdisintegrant (croscarmellose) are
displayed in fig. 1(b) and (d). The cumulative % drug
release time profile curves of domperidone and cinnarizine
are presented in fig. 2(a) and (b), respectively. The
chromatograms of standard domperidone and cinnarizine,
along with their optimized bilayer tablets, are also
illustrated in fig. 2(c) and (d), respectively. The
mechanism of drug release kinetics of the ER and IR
formulations, after applying different kinetic models and f>
values, is presented in table 5.

ANN-based modeling

The MLP neural network built with input variables (HPMC
K4M and sodium carbonate) and dissolution time points as
output responses with one hidden layer containing 3, 4 and
5 activation nodes in the case of ER formulations, is
illustrated in fig. 3. Similarly, the MLP neural network also
designed for the IR formulations with croscarmellose and
magnesium stearate as input variables, is also displayed in
fig. 3. The performance indices of training and testing of
data in terms of r> and SSE values for both drugs are
compiled in table 6.

Optimization based on the prediction profiler originated
from the ANN

The generated prediction profiles in figs. 4(a) and (c)
indicate the predicted values of the independent variables
against the targeted responses, which are found to be close
to the values as obtained by CCD-based numerical
optimization (Fig. 5). Along with prediction profilers,
contour profilers for both drugs were also computed and
presented in figs. 4(b) and (d).

CCD-based modeling

The experimental data from the CCD-generated trial
formulations (F1-F13) and (FD1-FD13) were used with the
numerical optimization technique of central composite
design to predict the values of the input variables, which
are presented in the ramp plots (Fig. 5) showing desirability
that almost meets the target goals. The CCD-generated
optimized formulations, as shown in the ramp plots for
cinnarizine and domperidone, are denoted Fopi. ccp (CNZ)
and Foi. cco (DOM), respectively, which were
subsequently selected for the development of the bilayer
tablet. The polynomial equations, along with selected
models, are presented in table 7. The effects of input
variables on the output responses are also given by
constructing 3D response surface plots in fig. 6. The
overlay plots from the graphical optimization are shown in
fig. 7, which illustrate the yellow area as the design space.

ANOVA-based comparison between CCD and ANN-
assisted formulations

In recent work, the model efficiency of both techniques
(CCD and ANN) was assessed using an ANOVA-based
comparison. The one-way analysis of variance indicated no

Aatka Ali et al.

significant differences between the optimized formulations
assisted by CCD and the predicted formulations originated
by ANN in terms of critical output responses. The p-values
for ER and IR tablets were 0.139 and 0.247, respectively,
as shown in table 8.

In-silico PBPK study

The input parameters retrieved from the literature and
predicted by the ADMET® are presented in table 9. The
pharmacokinetic parameters determined by the PKPlus®
module from the available reported studies, including Cax,
Tmax, AUCo-inr, and AUCy., along with fold errors, are listed
in table 10. The model also selected a two-compartment
model for domperidone, while a one-compartment model
for cinnarizine. Fig. 8 depicts the visual resemblance
between the predicted and the experimental (observed)
profiles.

DISCUSSION

This study aimed to identify the critical input variables by
simultaneously applying a ML-based ANN model and a
conventional RSM-based CCD model to each formulation
(i.e., IR and ER), followed by the development of a bilayer
tablet using the resultant optimized compositions. The
FTIR study indicated compatibility of cinnarizine with the
polymer and of domperidone with the superdisintegrant, as
reported by other studies (Oransa et al., 2022; Lee et al.,
2014). All trial batches and the optimized formulations
were subjected to physicochemical evaluation in
accordance with USP and in-house quality control testing.
The average weight variation results of all the IR and ER
tablets (Table 4) complied with the pharmacopoeial limits,
i.e., £7.5% with 200mg as the target weight. Similarly, the
average weight variation of all the bilayer tablets (Table 4)
was within USP limits, i.e., £5%, while targeting an
average weight of 400mg. The hardness of all the ER
tablets of cinnarizine and IR tablets of domperidone were
in the range of 5.5+0 to 6.8+0.1kg/cm? and 3.1+0.1 to
4.6+£0.2 kg/cm?, respectively. The hardness of the
compressed bilayer tablets ranged from 7.7+0.12 to
8.6+0.2 kg/cm?. The friability of all IR, ER, and bilayer
tablets was recorded as less than 1%, thereby complying
with the specifications (USP-NF, 2022). The in-vitro
dissolution data for the trial batches were assessed for
release kinetics using both model-dependent and model-
independent approaches. The 1% values were in a range
between 0.01-0.85 (zero-order), 0.48-0.99 (first-order),
0.6-0.98 (Higuchi), 0.87-0.99 (Korsmeyer-Peppas), and
0.76-0.98 (Hixson-Crowell). Compared with other models,
the Korsmeyer-Peppas model provided the best fit. The
release exponent, "n", of formulations coded F4, F10, and
F11 was found to be less than 0.45, indicating Fickian
diffusion.
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Table 10: Pharmacokinetic (Pk) parameters obtained from the observed and predicted plasma concentration profile

following oral administration of domperidone and cinnarizine

Pk parameters domperidone Oral tablet (20mg DOM) Fopt. CCD (15mg DOM)
Observed Predicted FE* Predicted FE"
Crnax (ng/ml) 27.5 35.59 1.29 24.10 1.14
Tmax (h) 0.89 1.28 1.43 1.28 0.67
AUCq.int (ng-h/ml) 231.5 164.42 0.71 115.98 1.99
AUC. (ng-h/ml) 144.5 131.07 0.90 88.4 1.63
Pk parameters cinnarizine Oral tablet (75mg CNZ) Fopt. CCD (75 mg CNZ)
Observed Predicted FE* Predicted FE
Crnax (ng/ml) 142.6 215.8 1.51 110.69 1.28
Trax (h) 2.88 2.16 0.75 5.08 0.56
AUCq.inf (ng-h/ml) 1361 1200 0.88 1336 1.01
AUC.t (ng-h/ml) 1014 1144 1.12 905.35 1.12

*Fold Error (FE) = Predicted/Observed (Li et al., 2024)

Incontrast, formulations coded as F1, F2, F3, F5, Fo6, F7,
F8, F9, F12 and F13 exhibited higher “n” values. These
findings are consistent with previous studies by Kriangkrai
et al. and Nagarwal et al., which suggest non-Fickian
diffusion from a matrix tablet containing HPMC as the
release-controlling polymer (Kriangkrai et al., 2024;
Nagarwal et al., 2024). All the trial formulations of IR
tablets were best fit to first-order kinetics (0.9122-0.9889),
whereas weak correlation coefficients were observed for
the Hixson-Crowell model (0.50-0.857). Similar results
were reported in a study in which domperidone followed
first-order kinetics when formulated as an immediate-
release layer of a bilayer tablet, suggesting that dissolution
of the drug was the predominant mechanism, rather than
diffusion, swelling, erosion, or relaxation due to matrix
formation of the polymer (Prajapati et al., 2024). The drug
content was found to be within 85% to 115% as per
specification (BP, 2022).

To leverage the artificial intelligence in this study, JMP®
Pro is used to build an artificial neural network. The input
layer of this network receives the initial data for two
independent variables —HPMC (K4M) and sodium
carbonate —and passes it to the hidden layer, which lies
between the input and output layers. The hidden layer
transforms the data before processing towards the output
layer which represents the outcomes, namely % drug
release at 1h, 6h and 12h after processing the data through
ANN as demonstrated in fig. 3. The same neural network
was constructed in the case of IR formulations (Fig. 3). The
optimal performance was achieved with 4 neurons in the
hidden layer activated by TanH function using a 0.1
learning rate and the square penalty method in the current
study. In one of the studies conducted by El-Metwally, the
best ANN architecture was built using a 0.1-squared
learning method, with three layers and a holdback ratio of
0.3333, which divided the data into 10 training runs,
thereby reducing prediction errors and enabling the
calculation of neural weights. The remaining 5 validation
runs serve to halt the training process. The study revealed

that the model was trained until r2 reached 0.9933, a value
associated with the model's generalizability (El-Metwally
et al., 2023). In another study, Sheth and Acharya also
employed an artificial neural network to optimize the drug-
release profile of quetiapine fumarate MR tablets. During
the training process, the excipient weights were optimized
to achieve the target drug release using MATLAB®
software (Sheth and Acharya, 2024).

The literature indicates that the built-in prediction profiler
function in JMP® Pro can examine the influence of
variation in independent factors on dependent factors,
thereby identifying the optimal combination of input
variables that maximizes desirability (Puri et al., 2022).
Similarly, after model training and testing, the built-in
model profiler is used in this study to select nodes and
predict optimal levels of input variables. In the case of the
ER formulation (Table 6), nodes 3 and 4 both show good
overall generalized coefficients of correlation, but node 3
is found to be inconsistent as it fails to predict Y3 response
with a nearly zero r? value and is also accompanied by a
high value of SSE, therefore not suitable to generate a
complete profile. Moreover, the negative 1> for the Y,
response at node 5 demonstrates its insufficiency to predict
the key response, while the 12 values for all three responses
(Y1, Y2, and Y3) are high and very close to each other
(0.83-0.86), indicating consistency at node 4. Similarly, in
the case of the IR formulation, node 3 shows a low
generalized correlation coefficient in both the testing
(r>=0.4212) and training (r>=0.672) datasets, indicating
underfitting, while node 4 is superior, with r?=0.926
(training) and r>=0.912 (testing). Moreover, the subsequent
node 5 shows good training (1r>=0.797), but fails to
demonstrate good generalization capability in the testing
phase (r>=0.332). Therefore, further training was halted,
and a prediction profile was generated at node 4 (Fig. 4).
The SSE values at node 4 are not the lowest for each
parameter, but the overall coefficient of correlation was
found to be highest in both the testing and training phases.
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The desirability value achieved through numerical
optimization using CCD is the ideal value as shown in the
ramp plot fig. 5 (a) and (b); however, the desirability
values, i.e., 0.889 (Fig. 4a) and 0.716 (Fig. 4c), acquired
through prediction profiler using ANN-MLP, are also close
to the desired value. In one of the studies conducted by
Kumar et al. obtained a desirability of 0.809 after
generating a prediction profile, indicating an optimal level
of independent variables including HPMC 15cps (40%),
PEG 400 (10%) and teen 80 (1%) predicting % drug release
in 15 minutes (96.22 %), % drug content (95.96%),
disintegration time (26.5sec.) and folding endurance
(278.25) for the development of fast dissolving buccal film
of ivabradine (Kumar et al., 2024). The 3D surface plots in
fig. 6 (a-e) show pronounced curvatures that explicitly link
with the non-linear relationship between the independent
and all the dependent factors of both ER and IR
formulations. Another study also indicated a curve
response in 3D plots between the factors, illustrating a non-
linear effect (Bangera et al., 2025).

A CCD-assisted multi-criteria decision strategy of
numerical optimization targeting the desirability approach
close to 1, also employed to achieve the desired quality
attributes by optimizing the input variables of both ER and
IR tablets. The quadratic model was found to be the best fit
as per the ANOVA fit summary (Table 7). To assess the
adequacy and efficiency of both predictive models, i.e.,
CCD and ANN, a one-way ANOVA was performed. The
statistical insignificance (p>0.05) indicated similarities in
the output responses (% drug release at 1h, 6h, and 12h for
the ER layer, and % drug release at 1h and % friability for
the IR layer). The results support the introduction of
machine learning programs as an optimization technique,
which are consistent with those reported by Khan et al. and
Saleem et al. for the QbD-based formulation of
moxifloxacin orodispersible and rivaroxaban push-pull
osmotic tablets, respectively (Khan et al., 2023; Saleem et
al., 2025).

The ACAT® model was initially developed by comparing
the predicted plasma concentration-time profile with the
experimental values following oral administration of 20
mg domperidone in healthy male volunteers (Helmy and El
Bedaiwy, 2014), as the intravenous plasma concentration-
time profile is not readily accessible. The same procedure
was followed for the extended-release cinnarizine
formulation, using data from the literature (Morrison et al.,
1979). In fig. 8, the plasma concentration-time plot of
predicted and experimental values overlaps for
domperidone, whereas the predicted curve for the
optimized formulation of cinnarizine resembles the
reported study (Kesharwani and Ibrahim, 2023). However,
the predicted parameters, including Cmax (ng/ml), Tmax (h),
AUC.inr (ng-h/ml), and AUCy.; (ng-h/ml), were within the
2-fold error range, as per specifications, which assures
good predictive performance (Cho et al., 2022). The
relative bioavailability of the CCD-generated formulations

Aatka Ali et al.

of cinnarizine (89%) and domperidone (81%) was within
the acceptable range, i.e., 80-125% (Amini et al., 2020).

CONCLUSION

In this study, a neural network-based ANN model was
successfully built, trained, and implemented to achieve the
desired quality attributes of the bilayer tablet formulation
with cinnarizine and domperidone as model drugs. The
predicted formulation obtained by the trained ANN
architecture was successfully cross-validated by the
multivariate CCD approach. Based on in-silico PBPK
studies, the oral bioavailability of the two drugs can be
readily understood along with the specific inter-personal
pharmacokinetic diversity without conducting in-vivo
studies.
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