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Abstract: Background: Response surface methodology coupled with the design of experiments identifies the optimal 

response surface function related to selected independent factors. Due to their rigid structures, they lack the learning 

capability from the developed response function. In contrast, a more advanced artificial intelligence-based tool, artificial 

neural network (ANN), offers an alternative to RSM-based regression methods. Objectives: This study was conducted to 

investigate the combined application of experimental design and a neural computing framework for modeling and 

optimization of a bilayer tablet with biphasic release of cinnarizine (CNZ) and domperidone (DOM), followed by in-silico 

physiologically-based pharmacokinetic (PBPK) modeling. Methods: The experimental data from the trial formulations 

supported by the central composite design (CCD) were trained using an artificial neural network. The predicted values of 

the input variables (HPMC K4M, sodium carbonate, croscarmellose and magnesium stearate) targeting the output 

responses (% drug release at 1h, 6h, 12h, and friability) were cross-validated using the numerical and graphical 

optimization technique of CCD. The in-silico PBPK modeling was used to measure relative bioavailability and simulate 

in-vivo plasma profiles under fasting state through GastroPlus® software. Results: The optimum quantities for developing 

a bilayer tablet —15% HMPC K4M, 3% sodium carbonate, 2% croscarmellose, and 1% magnesium stearate — were found 

to be very similar by both the CCD and ANN models, with desirability values close to 1. Moreover, ANOVA revealed no 

statistically significant difference between the optimized and predicted formulations. GastroPlus® assisted in the relative 

bioavailability evaluation of the optimized bilayer formulation, with an immediate-release domperidone and an extended-

release cinnarizine layer, showing 89% and 81%, respectively. Conclusion: It is concluded that AI-powered modeling, 

especially the integration of ANN, accelerates innovation, leading to faster and smarter optimization of pharmaceutical 

formulations. 
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INTRODUCTION 
 

The advent of artificial intelligence has brought a 

revolutionary impact, leveraging vast amounts of data that 

surpass human efficiency. Precisely, Artificial intelligence 

(AI) deals with such cognitive tasks that humans usually 

manage. Machine learning (ML) is a specific field of AI 

based on learning methods that enable machines to learn 

from external data sources, just as humans do. Based on 

newly acquired knowledge, machine learning programs 

enhance their ability to process (Wang et al., 2022b). An 

artificial neural network (ANN) is an AI tool that 

resembles the human brain's working (Makomere et al., 

2023).  The multilayer perceptron (MLP), radial basis 

function neural networks (RBFNNs), convolutional neural 

networks (CNNs), Kohonen networks, and recurrent neural 

networks (RNNs) are a few familiar ANN models. Among 

them, CNNs are widely used for supervised learning of 

images, while RNNs are preferred for voice recognition. 

Kohonen networks, also known as self-organizing maps 

(SOMs), are applied in various domains of information, 

including speech recognition, classification, and clustering 

(Wang et al., 2022b). 
 

Among the ANN techniques, the MLP is considered more 

efficient for building and predicting models. It is based on 

a feed-forward model composed of one input layer, one or 

more hidden layers, and one output layer (Pham et al., 

2019). MLP's performance is its main advantage. The 

complex problem can be predicted and analyzed using an 

MLP, owing to its hidden layers, which possess problem-

solving capability. The classification of unknown patterns 

is possible with the aid of known patterns that share the 

same properties, because MLPs solve problems 

probabilistically, providing approximate solutions to 

complex problems (Ismail et al., 2023). In addition, "feed-*Corresponding author: e-mail: aatka.ali@iqra.edu.pk 
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forward" does not imply that signals cannot be processed 

in the backward direction; rather, it indicates that the 

network architecture is loop-free. The backpropagation 

algorithm is also a key concept. Forward transmission of 

the signal and backpropagation of the error gradient are the 

two steps involved in training the backpropagation 

algorithm. It means that the calculated results are 

propagated from the input layer towards the output 

direction along with the acquisition of error signals. All the 

neurons in each layer receive the error signals from the 

output towards the input direction, once the weights and 

thresholds are calculated. All layers in MLP use the 

backward-pass error signal and employ gradient descent to 

recalculate each neuron's weights (Wang et al., 2022b). 
 

Response surface methodology (RSM) is a statistical tool 

that uses empirical models to evaluate the effects of input 

variables on predefined output variables. The central 

composite design (CCD) is among the most widely used 

designs for fitting second-order models (Malenga et al., 

2022). In the current study, a physiologically-based 

pharmacokinetic (PBPK) modeling software program is 

also implemented to predict in-vivo drug performance. 

PBPK software platforms are equipped with different 

mechanistic absorption frameworks, such as GastroPlus® is 

associated with Yu and Amidon's suggested 

compartmental absorption and transit model (CAT) (Yu 

and Amidon, 1999) that has been modified by 

incorporating many parameters, like colon absorption and 

is designated as advanced compartmental absorption and 

transit (ACAT) model (Demeester et al., 2023). This model 

comprises nine compartments that resemble the human GI 

tract and can predict the rate and extent of absorption in a 

similar manner (Lin et al., 2022). Based on physiological 

and biochemical diversity relative to healthy adults, a 

specific patient population can be built, and this virtual 

population can undergo further clinical trial simulations. 

Instead of performing a clinical trial, this strategy is 

appropriate for determining drug disposition in geriatrics 

(Vyas and Taft, 2025). PBPK modeling can expand the 

evidence base for pediatric dose regimens by combining 

with existing clinical pharmacokinetic data, which are 

often limited in number (Freriksen et al., 2023). 
  
The building and the accuracy of the PBPK models are 

greatly affected by the unavailability of parameters. The 

parameters required to build a PBPK model can be 

categorized into physiological, drug-related, and 

experimentally generated parameters. Body weight, tissue 

perfusion rate, organ blood flow, tissue volume, and 

cardiac output are some of the physiological factors. 

Moreover, PBPK models are susceptible to factors related 

to the drug, such as chemical-specific absorption, 

distribution, metabolism, and excretion. Both crucial 

factors for PBPK can be obtained through expensive, 

lengthy experimental procedures. In addition, PBPK 

modeling is limited by the lack of in vivo data (Huang et 

al., 2024).  

The present study employs a Quality by Design (QbD) 

approach based on RSM and a more modern machine 

learning tool, i.e., an artificial neural network (ANN), to 

optimize the formulation of a bilayer tablet containing 

domperidone (DOM) and cinnarizine (CNZ). Cinnarizine 

is a piperazine calcium blocker used to treat 

cerebrovascular problems (Zhang et al., 2022). 

Domperidone is a peripherally selective dopamine D2 

receptor antagonist (Afzal et al., 2021). Motion sickness 

can be treated with a combination of these drugs. Based on 

clinical studies, the combination therapy of these 

medications was found to be more effective than the 

individual administration of each drug (Alam and Shakeel, 

2024). Although research studies are available using the 

hybrid ML-ANN and RSM-CCD frameworks to predict 

predefined targets, the data lack information on the 

implementation of these approaches in a fixed-dose 

combination. The novelty of this work lies in integrating 

both methods into a fixed-dose combination bilayer tablet 

containing two different drugs with a dual-release profile, 

thereby supporting the QbD approach. 

 

MATERIALS AND METHODS 

 

Cinnarizine and domperidone maleate were provided as a 

gift sample from Aspin Pharma Pvt. Ltd. (Karachi, 

Pakistan). Acetonitrile was procured from Tedia (Fairfield, 

USA), ortho-phosphoric acid from BDH Chemicals, Ltd. 

(Poole, England), trimethylamine and magnesium stearate 

from Daejung chemicals and metals (Siheung-si, 

Gyeonggi-do, Korea), and Potassium hydroxide was 

purchased from Merck (Darmstadt, Germany). 

Hydroxypropyl methyl cellulose (HPMC) K4M, potassium 

dihydrogen phosphate, sodium carbonate, and PVP-K30 

were procured from Sigma-Aldrich (Steinheim, Germany). 

Avicel PH-101 and croscarmellose were obtained from 

Avonchem (Cheshire, United Kingdom), and Iron oxide 

yellow (E172) was procured from Evonik Industries 

(Givaudan Roure, GmbH, Germany). 

 

Experimental design for the CNZ and DOM 

formulations 

The RSM-based CCD was applied to statistically analyze 

two factors per layer at five levels, i.e., +1, -1, 0, +α, and -

α (where α = 1.414), employing Design-Expert® (State-

Ease, 360 trial version, Inc., Minneapolis, MN 55413, 

USA). The selected independent and dependent factors, 

their levels, and the output responses, along with their 

constraints, are compiled in table 1. The central composite 

design based on randomization included four axial, four 

factorial, and centre-point runs, each repeated quintuply, to 

evaluate the method's repeatability. The experimental runs 

were determined by 2k+2k+n0, where k and n0 denote the 

numbers of independent variables and repetitions at the 

centre point, respectively (Mazumdar et al., 2021). A total 

of 13 trial batches of each extended-release cinnarizine 

(ER) and immediate-release domperidone (IR) 
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formulations corresponding to F1-F13 and FD1-FD13, 

respectively, were generated keeping k=2 and n=5 (Table 

2). 

 

Pre-compression and compatibility studies 

The micrometrics studies were conducted to assess the 

flow characteristics of all the trial batches generated by 

CCD (Table 2) as per USP-NF specifications (USP-NF, 

2022). A known quantity of the powder blend was weighed 

into a 10ml graduated cylinder to determine the bulk 

density, and the powder was mechanically tapped until a 

constant volume was reached to determine the tapped 

density. The following equations were used to calculate the 

parameters, including tapped density (ρt), bulk density (ρb), 

Carr's index, Hausner's ratio, and angle of repose.  

Bulk density (ρ�) =
Mass of powder(g)

Volume of powder(ml)
(1) 

   

Tapped density (ρ�) =
Mass of powder(g)

Tapped volume(ml)
(2) 

 

Carr"s index =
(ρ� − ρ�)

ρ�
× 100 (3) 

 

Hausner′s ratio =    
Tapped density (ρt)

Bulk density (ρ�)
(4) 

  

Angle of repose (θ) =  tan-. /0

1
(5)

Where "h" and "d" are the height and diameter of the heap, 

respectively. 

 

The interaction between drugs with the polymer and 

superdisintegrant was determined by Fourier transform 

infrared (FTIR) spectrometry (Nicolet-6700, Thermo 

Scientific, US) in the region of 4000-400 cm-1. The 

physical mixture of cinnarizine and HPMC K4M, as well 

as domperidone and croscarmellose, at a 1:1 ratio was 

analyzed (Rojek et al., 2023). 

 

Preparation of the extended-release (ER) layer of CNZ 

The extended-release (ER) layer was prepared by the wet 

granulation method using a single-punch machine 

(Erweka, Korsch, Frankfurt, Germany) fitted with an 

eccentric B-type biconvex punch and die set (11.5 mm 

diameter). All the ingredients (Table 2) were accurately 

weighed and passed through the stainless steel sieve (mesh 

no. 25) separately. The drug (CNZ), HPMC K4M, sodium 

carbonate, microcrystalline cellulose, and iron oxide 

yellow pigment were thoroughly mixed. The aqueous 

granulating fluid of PVP-K-30 (5% w/w) was added to the 

powder blend dropwise till a suitable wet mass was 

obtained, followed by granulation through sieve 12. The 

obtained granules were oven-dried at 60 ºC for 1h and then 

sieved through a 30 screen. The final dried granules were 

blended with magnesium stearate before compression.  

 

Preparation of the immediate-release (IR) layer of DOM 

The granules for the immediate-release layer were 

prepared using the same procedure as for the ER layer. The 

accurately weighed ingredients (Table 2) were blended and 

granulated with 10% (w/w) aqueous PVP-K-30, then oven 

dried and sieved. Magnesium stearate was blended with the 

granules prior to compression (Prajapati et al., 2009). 

  

Preparation of a bilayer tablet of CNZ and DOM 

The bilayer tablet formulation (B1) was prepared by the 

double-compression technique using the optimized layers 

of DOM and CNZ, with acceptable dissolution profiles. 

Initially, the extended-release layer of CNZ granules was 

fed into the die cavity and then compressed to achieve an 

intermediate tablet with an average weight of ± 200 mg 

using a B-type biconvex (11.5 mm diameter) single-punch 

machine (Erweka, Korsch, Frankfurt, Germany). The 

granules of the immediate-release (IR) layer were then 

poured over the pre-compressed intermediate extended-

release layer, subsequently compressed to an average 

weight of ± 400 mg (Nguyen et al., 2021). 

 

Post-compression quality control evaluation 

Each trial and optimized formulations of both drugs (FD1-

FD13), (F1-F13), and (B1) were subjected to quality 

control evaluation. The weight variation and friability of 

the tablets were determined by using an analytical balance 

(Sartorius CP224S, Germany) and a Roche-type friabilator 

(Erweka GmbH, Heusenstamm, Germany), respectively. 

The diameter and thickness were measured using a vernier 

caliper (Seiko, China). The hardness and disintegration 

time of tablets were measured by a hardness tester 

(Erweka, Germany) and a basket rack disintegration 

assembly (Erweka ZT2, Heusenstamm, Germany), 

respectively (USP-NF, 2022; Asrade et al., 2023). 

 

In-vitro dissolution study and release kinetics 

All the trial formulations were subjected to in vitro drug 

release studies using the USP paddle-type apparatus 

(Erweka GmbH 600, Heusenstamm, Germany). The tablets 

were placed in hemispherical dissolution vessels 

containing 900 mL of 0.1N HCl (pH 1.2) at 50 rpm. The 

dissolution medium was maintained at 37±0.5ºC and the 

samples (10 ml) were drawn at regular time intervals (0.5, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 h) for ER tablets (CNZ) 

while 1h (5, 10, 20, 30, 45 and 60 min) for IR tablets 

(DOM). The same volume withdrawn each time was 

replaced with fresh dissolution medium. All the samples 

were filtered through a 0.45µm Whatman filter paper and 

the resultant filtrates were diluted. The samples of 

cinnarizine and domperidone were analyzed by using a 

UV-spectrophotometer (UV-1800, Shimadzu Corporation, 

Kyoto, Japan) at 254nm (Kesharwani and Ibrahim, 2023) 

and 284nm (Ardalkar et al., 2024) respectively. 
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To examine the drug release mechanism from the ER 

tablet, an Excel add-in program, DD solver, was used to 

apply a model-dependent approach, including zero-order, 

first-order, Higuchi, Hixson Crowell, and Korsmeyer 

Peppas models, whereas first-order and Hixson Crowell 

models were applied to examine the release profiles of IR 

tablets (Maqbool et al., 2024). 
  Q�  =  Q4 + K4 t (Zero Order) (6) 

            :; =  Q4
<=>?@

 (First order) (7) 

           :; = kCtD.F (Higuchi) (8) 

    Q4
. J⁄

− Q�
. J⁄

= KCLt (Hixon Crowell) (9) 

M� /MO =  PQRST(Korsmeyer Peppas) (10) 

Where, Qt = the amount of drug released at time (t), Qo = 

the initial amount of drug released at time (t=0), Kₒ = zero 

order rate constant, k1= first order rate constant, kH = 

Higuchi constant KHC =Hixson Crowell constant, Mt/M∞ is 

the fraction of drug release at time (t), k= kinetic constant 

and n= diffusion exponent 
 

Model-independent methods  

The similarity in dissolution profiles of IR and ER tablets 

of the trial formulations was assessed using the f2 similarity 

factor in DD solver, with 0.1 N HCl buffer (pH 1.2) as the 

dissolution medium. Formulations were considered similar 

in terms of dissolution profile if the calculated f2 value was 

≥ 50 (Diaz et al., 2016).  

Table 1: Selection of factors, levels, responses and constraints of the extended and immediate release formulations for 

CCD-based optimization 

 

Variables Levels 

Independent variables (Extended-release formulation, CNZ) Low   High 

X1= HPMC K4M 5 25 

X2= Sodium carbonate 3 5 

Dependent Variables (Extended-release formulation, CNZ) Constraints 

Y1= Cumulative % drug Release in 1h 13.9%<Y1<20% 

Y2= Cumulative % drug Release in 6h 50%<Y2<70% 

Y3= Cumulative % drug Release in 12h 90%<Y3<100% 

Independent Variables (Immediate-release formulation, DOM) Low High 

X1= Croscarmellose 1 3 

X2= Magnesium stearate 0.5 1.5 

Dependent variables (Immediate-release formulation, DOM) Constraints 

Y1= Cumulative % drug release in 1h 85%< Y1<100% 

Y2= Friability 0%< Y2<1% 

 

 
 

Fig. 1: FTIR spectra (a) Pure API (cinnarizine) (b) Cinnarizine and polymer (HPMC K4M) (c) Pure API (domperidone) 

(d) Domperidone and superdisintegrant (croscarmellose) 
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Assay of the developed optimized formulation 

The assay of the optimized formulation (B1) was 

performed using a modified HPLC method as described by 

Clark (Conemans, 2011).  The HPLC system consisted of 

an isocratic pump (LC-20AT, Shimadzu, Kyoto, Japan) 

fitted with a C-18 column (ODS-H optimal 5μm, 150 x 4.6 

mm i.d.), UV-visible detector (SPD-20A, Shimadzu, 

Kyoto, Japan), auto-sampler (SIL-20 A HT, Shimadzu, 

Kyoto, Japan), and a column oven (CTO-20A). Data 

acquisition and processing were performed using Lab 

Solutions software (version 5.65, Shimadzu Corporation). 

The column oven was kept at ambient temperature, and the 

pump was set to a flow rate of 1.3 ml/min with an injection 

volume of 40 μl. A mixture of acetonitrile and buffer (pH 

3.3) at a 47:53 ratio was used as the mobile phase. The 

buffer was prepared by adding orthophosphoric acid (750 

µl) and triethylamine (approx. 150 µl) to distilled water, 

and the potassium hydroxide solution (10%) was used to 

adjust the pH. The mobile phase was then filtered through 

a 0.45µm membrane filter using a filtration assembly, and 

degassed in an ultrasonicator (Ultrasonic LC-10 H, Elma, 

Germany) for 15-20 minutes. The peaks of eluents were 

detected at 210 nm. 

  
Comparison between CCD and ANN-based modeling  

In the present work, a multilayer perceptron artificial 

neural network (MLP-ANN) was applied to the 

experimental data sets of each ER and IR tablet using JMP® 

Pro 18 software (SAS Institute Inc., North Carolina, USA) 

(Navabhatra et al., 2021; Paneiro and Rafael, 2021). The 

ANN model findings were also cross-validated against 

graphical and numerical optimization of the RSM-based 

CCD using Design-Expert® (Saleem et al., 2025). The 

optimized formulations were subsequently used to prepare 

a bilayer tablet. 

 

ANN topology  

The MLP-ANN architecture was built using supervised 

training and testing on the experimental data sets generated 

by CCD for both ER and IR formulations. The ANN 

models were crafted in three layers. The input layer of the 

ER formulation consists of two neurons, representing the 

independent variables, i.e., HPMC K4M (X1) and sodium 

carbonate (X2). In comparison, the output layer consists of 

three neurons, considered as dependent variables: % drug 

release at 1h (Y1), 6h (Y2), and 12h (Y3). Both layers are 

interconnected, with a single hidden layer, and all nodes 

use the hyperbolic tangent (TanH) as their activation 

function. Similarly, the input layer of IR formulations 

comprises two neurons — croscarmellose (X1) and 

magnesium stearate (X2) —while the output layer 

comprises two neurons, presenting % drug release at 60 

min (Y1) and friability (Y2). The feed-forward back 

propagation algorithm was applied to train and test the 

multilayer perceptron. 
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Fig. 2: Cumulative % drug release vs. time profiles (a) IR formulations (DOM) (b) ER formulations (CNZ) (c) Standard 

chromatogram of DOM and CNZ (d) Chromatogram of a optimized bilayer tablet (B1) 
 

 
 

Fig. 3: MLP neural network topologies (a–c) ER formulations of CNZ with inputs (X₁ =HPMC K4M, X₂=sodium 

carbonate) and outputs %DR at 1h, 6h, and 12h, (d–f) IR formulations of DOM with inputs (X₁=croscarmellose, 

X₂=magnesium stearate) and outputs % DR at 60 mins and friability using 3, 4 and 5 hidden nodes respectively 
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The holdback procedure was used at a 0.3 (70:30) split by 

selecting from the model launch menu, as it randomly 

divides the dataset into training (70%) and testing (30%) 

(Simões et al., 2020; Wang et al., 2022a). The hidden 

neurons and learning rate were examined using the squared 

penalty method to determine the optimized ANN 

architecture (Elsayed et al., 2021; El-Metwally et al., 

2023). The neural nodes were tested in the range of 3-5 

(Paneiro and Rafael, 2021). The sum of squared errors 

(SSE) and the r2 values were used to assess the predictive 

ability and statistical significance of the ANN model 

(Simões et al., 2020). 

 

Implementation of the desirability function for ANN-

based optimization 

To obtain optimized formulations, the best node was 

selected based on the maximum r2 and minimum SSE. For 

the selected node, a prediction profiler was computed using 

the built-in model profiler in JMP® Pro 18, and the 

desirability function for each response was applied based 

on response limits (Harkat-Madouri et al., 2025). The 

predicted formulations of both drugs, Fpred. ANN (CNZ) and 

Fpred. ANN (DOM) models were formulated in JMP® Pro 18, 

and the critical output responses were analyzed along with 

other quality control attributes (Khan et al., 2023). 
 

Implementation of the desirability function for CCD-

based optimization 

The same experimental data sets were estimated by 

numerical and graphical optimization of CCD based on the 

desirability approach. The polynomial equations coupled 

with quadratic terms were established by multiple linear 

regression analysis (MLRA). At the 5% significance level, 

the model terms' significance was determined (Akhtar et 

al., 2024). The ramp and overlay plots were constructed to 

present the design space and to predict the desired 

quantities for optimal responses.  
 

Analysis of variance for the comparison of optimized and 

predicted formulations 

To cross-validate, the optimized formulations, i.e., Fopt. CCD 

(CNZ) and Fopt. CCD (DOM), suggested by employing 

numerical and graphical optimization techniques, was 

compared with Fpred. ANN (CNZ) and Fpred. ANN (DOM) 

formulations assisted by a trained ANN model. The 

proposed formulations were prepared in triplicate and 

assessed for the output responses, which were subsequently 

compared using one-way analysis of variance in SPSS 

version 25 at the 5% significance level. 

 

In-silico PBPK modeling 

Model building 

A PBPK model was developed using the built-in 

'Advanced Compartmental Absorption and Transit' 

(ACAT)® model in GastroPlus® software version 9.9 

(Simulations Plus Inc., Lancaster, CA, USA) to estimate 

Fopt. CCD (CNZ) and Fopt. CCD (DOM). 
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Fig. 4: Profiler based on desirability function computed by ANN topology (a) Prediction profiler of the ER formulations 

(b) Contour profiler for the ER formulations (c) Prediction profiler of the IR formulations (d) Contour profiler for the IR 

formulations 

 

 
 

Fig. 5: Selected CCD-generated ramp plots with desirability values for the optimized (a) Extended-release (ER) 

formulation (CNZ) (b) Immediate-release (IR) formulation (DOM) 
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  Table 6: Performance indices of the MLP-ANN architecture 

 

Nodes Data set 

ER tablets 

(CNZ) 

Generalized  

r2 

% drug release 1 h 

(Y1) 

% drug release 6 h (Y2) 

  r2 SSE r2 SSE r2 SSE 

3 Training 0.98 0.84 730.7 0.97 63.4 0.99 12.4 

Testing  0.96 0.84 4.59 0.7 32.16 0.05 126.1 

4* Training 1.00 0.87 58.4 0.98 36.77 0.97 35.2 

Testing  0.90 0.86 14.7 0.83 52.04 0.83 62.4 

5 Training 0.99 0.74 117.6 0.97 65.3 0.95 50.65 

Testing  0.80 -2.06 104.1 0.80 21.7 0.67 43.1 

Nodes Data set 

IR tablets 

(DOM) 

Generalized  

r2 

% drug release  

60 min (Y1) 

Friability 

(Y2) 

  

r2 SSE r2 SSE   

3 Training 0.4212 0.38 20.37 0.051 0.89   

Testing 0.672 -0.02 37.93 0.681 .0063   

4* Training 0.926 0.68 10.36 0.02 37.82   

Testing 0.912 0.117 0.82 0.914 .0017   

5 Training 0.797 0.77 7.5 -0.07 39.66   

Testing 0.332 0.089 0.84 0.37 0.0124   
*Node 4 is selected to generate the prediction profile as it has the overall highest r2 value with minimum SSE 
 

 

 

Fig. 6: Response surface plots (3D) originated from CCD presenting % drug release at 1h, 6h and12h (a,b,c) from ER 

formulations, % drug release at 1h and friability (d, e) from IR formulations 
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  Table 7: Analysis of variance for the fitness of the central composite design matrix of both extended-release (CNZ) and 

immediate-release (DOM) formulations 
 

Responses Model F-value p-value  Model equations in terms of coded factors 

Extended-release (CNZ) formulations 

Y1 Quadratic 7.81 0.0088 Y1=18.51-18.65A+0.80B-0.75AB+13.72A2-1.48 B2 

Y2 Quadratic 107.94 0.0001 Y2=64.00-17.06A+0.013B+1.25AB+6.65 A2+2.34B2 

Y3 Quadratic 29.87 .0001 Y3=88.80-12.82A-2.35B-1.05AB-1.51A2+1.62B2 

Immediate-release (DOM) formulations 

Y1 Quadratic 4.07 0.0472 Y1=98.25+1.69A-4.26B+0.20AB-0.58A2+1.65B2 

Y2 Quadratic 0.62 0.6892 Y2=0.48-0.054A-0.28B+0.1AB+0.11A2+0.16 B2 
 

 
 

Fig. 7: Overlay plots obtained by graphical optimization exhibiting design space of (a) ER formulations (b) IR 

formulations 
 

 
 

Fig. 8: Predicted and observed plasma concentration time curves: (a) Model building through extracted data from 

literature for domperidone (b) Model estimation for the optimized formulation, Fopt. CCD (DOM) (c) Model building 

through extracted data from literature for cinnarizine (d) Model estimation for the optimized formulation, Fopt. CCD (CNZ) 
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The physiological and physicochemical parameters were 

computed using the ADMET® predictor embedded in the 

software and were also retrieved from the literature. The 

plasma concentration-time profiles extracted from 

previous studies were included in the PK Plus® module of 

Gastroplus®. This module evaluated the input data using 

one, two, and three-compartment models (Wang et al., 

2023).  
 

Model evaluation and simulation 

The developed model was evaluated by calculating fold 

error (FE) for Cmax, Tmax, AUC0-inf, and AUC0-t. The in-vitro 

dissolution profiles of both drugs were entered, and a single 

simulation was performed. Relative bioavailability was 

also calculated for both drugs. 

 

RESULTS  
 

Pre-compression and post-compression studies 

The findings of micrometrics studies complied with the 

USP specifications mentioned in General Chapter <1174> 

Powder Flow (USP-NF, 2022) and compiled in table 3, 

while the results of post-compression quality control 

evaluation were given in table 4, representing FD1-FD13 

(IR formulations), F1-F13 (ER formulations), and B1 

(bilayer formulation). The FTIR spectra of individual drugs 

Table 8: ANOVA for the comparison of optimized and predicted formulations of both drugs originated from ANN and CCD 
 

ER formulationa 

Source of variation Sum of squares Difference Mean Square F- value p-value 

Between groups 1.602 1 1.602 3.396 0.139 

Within groups 1.887 4 0.472   

Total 3.488 5    

IR formulationb 

Between groups 1.530 1 1.530 1.839 0.247 

Within groups 3.329 4 0.832   

Total 4.859 5    
aGroup1: Fopt. CCD (CNZ), Group 2: Fpred. ANN   (CNZ) bGroup1: Fopt. CCD (DOM), Group 2: Fpred. ANN (DOM) 
 

Table 9: Input parameters of both drugs for PBPK modeling  
 

IR tablet (DOM) 

Parameters Value Source 

Molecular weight (g/mol) 425.92 ADMET predictor® 

Log P 3.96 ADMET predictor® 

pKa 11.36, 8 ADMET predictor® 

Peff (cm/s×10-4) 1.55 ADMET predictor® 

Rbp (Blood/plasma ratio) 0.8 ADMET predictor® 

Fup(%) 3.92 ADMET predictor® 

Precipitation time (s) 900 Gastroplus® standard 

Diffusion coefficient (cm2/sec×10-5) 0.64 ADMET predictor® 

Drug particle density (g/ml) 1.2 ADMET predictor® 

Physiology Fasted (Human) Experimental parameter 

ASF (model) Opt log D SA/V 6.1 Absorption scale factor 

K12(1/h) 1.52 PKPlus® 

K21(1/h) 0.25 PKPlus® 

V2(L/kg) 7.88 PKPlus® 

ER tablet (CNZ) 

Molecular weight (g/mol) 368.514 g/mol ADMET predictor® 

Log P 5.6 ((Kesharwani and Ibrahim, 2023) 

pKa 1.95, 7.47 ((Kesharwani and Ibrahim, 2023) 

Peff (cm/s×10-5) 1.63 (Kesharwani and Ibrahim, 2023) 

Rbp (Blood/plasma ratio) 1 (Berlin et al., 2014) 

Fup(%) 0.165 ADMET Predictor® 

Precipitation time (s) 900 GastroplusTM Standard 

Diffusion coefficient (cm2/sec×10-5) 0.62 ADMET predictor® 

Drug particle density (g/ml) 1.2 ADMET predictor® 

Physiology Fasted (Human) Experimental parameter 

ASF (model) Opt log D SA/V 6.1 Absorption scale factor 

Cl (L/h) 5.02 PKPlus® 

Vc(L/kg) 3.99 PKPlus® 
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(Fig. 1a and 1c) along with the blended polymer (HPMC 

K4M) and superdisintegrant (croscarmellose) are 

displayed in fig. 1(b) and (d). The cumulative % drug 

release time profile curves of domperidone and cinnarizine 

are presented in fig. 2(a) and (b), respectively. The 

chromatograms of standard domperidone and cinnarizine, 

along with their optimized bilayer tablets, are also 

illustrated in fig. 2(c) and (d), respectively.  The 

mechanism of drug release kinetics of the ER and IR 

formulations, after applying different kinetic models and f2 

values, is presented in table 5.  

 

ANN-based modeling  

The MLP neural network built with input variables (HPMC 

K4M and sodium carbonate) and dissolution time points as 

output responses with one hidden layer containing 3, 4 and 

5 activation nodes in the case of ER formulations, is 

illustrated in fig. 3. Similarly, the MLP neural network also 

designed for the IR formulations with croscarmellose and 

magnesium stearate as input variables, is also displayed in 

fig. 3. The performance indices of training and testing of 

data in terms of r2 and SSE values for both drugs are 

compiled in table 6.  

 

Optimization based on the prediction profiler originated 

from the ANN 

The generated prediction profiles in figs. 4(a) and (c) 

indicate the predicted values of the independent variables 

against the targeted responses, which are found to be close 

to the values as obtained by CCD-based numerical 

optimization (Fig. 5). Along with prediction profilers, 

contour profilers for both drugs were also computed and 

presented in figs. 4(b) and (d). 
 

CCD-based modeling 

The experimental data from the CCD-generated trial 

formulations (F1-F13) and (FD1-FD13) were used with the 

numerical optimization technique of central composite 

design to predict the values of the input variables, which 

are presented in the ramp plots (Fig. 5) showing desirability 

that almost meets the target goals. The CCD-generated 

optimized formulations, as shown in the ramp plots for 

cinnarizine and domperidone, are denoted Fopt. CCD (CNZ) 

and Fopt. CCD (DOM), respectively, which were 

subsequently selected for the development of the bilayer 

tablet. The polynomial equations, along with selected 

models, are presented in table 7. The effects of input 

variables on the output responses are also given by 

constructing 3D response surface plots in fig. 6. The 

overlay plots from the graphical optimization are shown in 

fig. 7, which illustrate the yellow area as the design space. 

 

ANOVA-based comparison between CCD and ANN-

assisted formulations  

In recent work, the model efficiency of both techniques 

(CCD and ANN) was assessed using an ANOVA-based 

comparison. The one-way analysis of variance indicated no 

significant differences between the optimized formulations 

assisted by CCD and the predicted formulations originated 

by ANN in terms of critical output responses. The p-values 

for ER and IR tablets were 0.139 and 0.247, respectively, 

as shown in table 8. 

 

In-silico PBPK study 

The input parameters retrieved from the literature and 

predicted by the ADMET® are presented in table 9. The 

pharmacokinetic parameters determined by the PKPlus® 

module from the available reported studies, including Cmax, 

Tmax, AUC0-inf, and AUC0-t, along with fold errors, are listed 

in table 10. The model also selected a two-compartment 

model for domperidone, while a one-compartment model 

for cinnarizine. Fig. 8 depicts the visual resemblance 

between the predicted and the experimental (observed) 

profiles.  

 

DISCUSSION 
 

This study aimed to identify the critical input variables by 

simultaneously applying a ML-based ANN model and a 

conventional RSM-based CCD model to each formulation 

(i.e., IR and ER), followed by the development of a bilayer 

tablet using the resultant optimized compositions. The 

FTIR study indicated compatibility of cinnarizine with the 

polymer and of domperidone with the superdisintegrant, as 

reported by other studies (Oransa et al., 2022; Lee et al., 

2014). All trial batches and the optimized formulations 

were subjected to physicochemical evaluation in 

accordance with USP and in-house quality control testing. 

The average weight variation results of all the IR and ER 

tablets (Table 4) complied with the pharmacopoeial limits, 

i.e., ±7.5% with 200mg as the target weight. Similarly, the 

average weight variation of all the bilayer tablets (Table 4) 

was within USP limits, i.e., ±5%, while targeting an 

average weight of 400mg. The hardness of all the ER 

tablets of cinnarizine and IR tablets of domperidone were 

in the range of 5.5±0 to 6.8±0.1kg/cm2 and 3.1±0.1 to 

4.6±0.2 kg/cm2, respectively. The hardness of the 

compressed bilayer tablets ranged from 7.7±0.12 to 

8.6±0.2 kg/cm2. The friability of all IR, ER, and bilayer 

tablets was recorded as less than 1%, thereby complying 

with the specifications (USP-NF, 2022). The in-vitro 

dissolution data for the trial batches were assessed for 

release kinetics using both model-dependent and model-

independent approaches. The r2 values were in a range 

between 0.01-0.85 (zero-order), 0.48-0.99 (first-order), 

0.6-0.98 (Higuchi), 0.87-0.99 (Korsmeyer-Peppas), and 

0.76-0.98 (Hixson-Crowell). Compared with other models, 

the Korsmeyer-Peppas model provided the best fit. The 

release exponent, "n", of formulations coded F4, F10, and 

F11 was found to be less than 0.45, indicating Fickian 

diffusion. 
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Incontrast, formulations coded as F1, F2, F3, F5, F6, F7, 

F8, F9, F12 and F13 exhibited higher “n” values. These 

findings are consistent with previous studies by Kriangkrai 

et al. and Nagarwal et al., which suggest non-Fickian 

diffusion from a matrix tablet containing HPMC as the 

release-controlling polymer (Kriangkrai et al., 2024; 

Nagarwal et al., 2024).  All the trial formulations of IR 

tablets were best fit to first-order kinetics (0.9122-0.9889), 

whereas weak correlation coefficients were observed for 

the Hixson-Crowell model (0.50-0.857). Similar results 

were reported in a study in which domperidone followed 

first-order kinetics when formulated as an immediate-

release layer of a bilayer tablet, suggesting that dissolution 

of the drug was the predominant mechanism, rather than 

diffusion, swelling, erosion, or relaxation due to matrix 

formation of the polymer (Prajapati et al., 2024). The drug 

content was found to be within 85% to 115% as per 

specification (BP, 2022). 

 

To leverage the artificial intelligence in this study, JMP® 

Pro is used to build an artificial neural network. The input 

layer of this network receives the initial data for two 

independent variables —HPMC (K4M) and sodium 

carbonate —and passes it to the hidden layer, which lies 

between the input and output layers. The hidden layer 

transforms the data before processing towards the output 

layer which represents the outcomes, namely % drug 

release at 1h, 6h and 12h after processing the data through 

ANN as demonstrated in fig. 3. The same neural network 

was constructed in the case of IR formulations (Fig. 3). The 

optimal performance was achieved with 4 neurons in the 

hidden layer activated by TanH function using a 0.1 

learning rate and the square penalty method in the current 

study. In one of the studies conducted by El-Metwally, the 

best ANN architecture was built using a 0.1-squared 

learning method, with three layers and a holdback ratio of 

0.3333, which divided the data into 10 training runs, 

thereby reducing prediction errors and enabling the 

calculation of neural weights. The remaining 5 validation 

runs serve to halt the training process. The study revealed 

that the model was trained until r2 reached 0.9933, a value 

associated with the model's generalizability (El-Metwally 

et al., 2023). In another study, Sheth and Acharya also 

employed an artificial neural network to optimize the drug-

release profile of quetiapine fumarate MR tablets. During 

the training process, the excipient weights were optimized 

to achieve the target drug release using MATLAB® 

software (Sheth and Acharya, 2024). 
 

The literature indicates that the built-in prediction profiler 

function in JMP® Pro can examine the influence of 

variation in independent factors on dependent factors, 

thereby identifying the optimal combination of input 

variables that maximizes desirability (Puri et al., 2022). 

Similarly, after model training and testing, the built-in 

model profiler is used in this study to select nodes and 

predict optimal levels of input variables. In the case of the 

ER formulation (Table 6), nodes 3 and 4 both show good 

overall generalized coefficients of correlation, but node 3 

is found to be inconsistent as it fails to predict Y3 response 

with a nearly zero r2
 value and is also accompanied by a 

high value of SSE, therefore not suitable to generate a 

complete profile. Moreover, the negative r2 for the Y1 

response at node 5 demonstrates its insufficiency to predict 

the key response, while the r2 values for all three responses 

(Y1, Y2, and Y3) are high and very close to each other 

(0.83-0.86), indicating consistency at node 4. Similarly, in 

the case of the IR formulation, node 3 shows a low 

generalized correlation coefficient in both the testing 

(r2=0.4212) and training (r2=0.672) datasets, indicating 

underfitting, while node 4 is superior, with r2=0.926 

(training) and r2=0.912 (testing). Moreover, the subsequent 

node 5 shows good training (r²=0.797), but fails to 

demonstrate good generalization capability in the testing 

phase (r²=0.332). Therefore, further training was halted, 

and a prediction profile was generated at node 4 (Fig. 4). 

The SSE values at node 4 are not the lowest for each 

parameter, but the overall coefficient of correlation was 

found to be highest in both the testing and training phases. 
 

Table 10: Pharmacokinetic (Pk) parameters obtained from the observed and predicted plasma concentration profile 

following oral administration of domperidone and cinnarizine 

 

Pk parameters domperidone Oral tablet (20mg DOM) Fopt. CCD (15mg DOM)  

 Observed Predicted FE* Predicted FE* 

Cmax (ng/ml) 27.5 35.59 1.29 24.10 1.14 

Tmax (h) 0.89 1.28 1.43 1.28 0.67 

AUC0-inf (ng-h/ml) 231.5 164.42 0.71 115.98 1.99 

AUC0-t (ng-h/ml) 144.5 131.07 0.90 88.4 1.63 

Pk parameters cinnarizine Oral tablet (75mg CNZ) Fopt. CCD (75 mg CNZ) 

 Observed Predicted FE* Predicted FE* 

Cmax (ng/ml) 142.6 215.8 1.51 110.69 1.28 

Tmax (h) 2.88 2.16 0.75 5.08 0.56 

AUC0-inf (ng-h/ml) 1361 1200 0.88 1336 1.01 

AUC0-t (ng-h/ml) 1014 1144 1.12 905.35 1.12 
*Fold Error (FE) = Predicted/Observed (Li et al., 2024) 
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The desirability value achieved through numerical 

optimization using CCD is the ideal value as shown in the 

ramp plot fig. 5 (a) and (b); however, the desirability 

values, i.e., 0.889 (Fig. 4a) and 0.716 (Fig. 4c), acquired 

through prediction profiler using ANN-MLP, are also close 

to the desired value. In one of the studies conducted by 

Kumar et al. obtained a desirability of 0.809 after 

generating a prediction profile, indicating an optimal level 

of independent variables including HPMC 15cps (40%), 

PEG 400 (10%) and teen 80 (1%) predicting % drug release 

in 15 minutes (96.22 %), % drug content (95.96%), 

disintegration time (26.5sec.) and folding endurance 

(278.25) for the development of fast dissolving buccal film 

of ivabradine (Kumar et al., 2024). The 3D surface plots in 

fig. 6 (a-e) show pronounced curvatures that explicitly link 

with the non-linear relationship between the independent 

and all the dependent factors of both ER and IR 

formulations. Another study also indicated a curve 

response in 3D plots between the factors, illustrating a non-

linear effect (Bangera et al., 2025). 
 

A CCD-assisted multi-criteria decision strategy of 

numerical optimization targeting the desirability approach 

close to 1, also employed to achieve the desired quality 

attributes by optimizing the input variables of both ER and 

IR tablets. The quadratic model was found to be the best fit 

as per the ANOVA fit summary (Table 7). To assess the 

adequacy and efficiency of both predictive models, i.e., 

CCD and ANN, a one-way ANOVA was performed. The 

statistical insignificance (p>0.05) indicated similarities in 

the output responses (% drug release at 1h, 6h, and 12h for 

the ER layer, and % drug release at 1h and % friability for 

the IR layer). The results support the introduction of 

machine learning programs as an optimization technique, 

which are consistent with those reported by Khan et al. and 

Saleem et al. for the QbD-based formulation of 

moxifloxacin orodispersible and rivaroxaban push-pull 

osmotic tablets, respectively (Khan et al., 2023; Saleem et 

al., 2025). 
 

The ACAT® model was initially developed by comparing 

the predicted plasma concentration-time profile with the 

experimental values following oral administration of 20 

mg domperidone in healthy male volunteers (Helmy and El 

Bedaiwy, 2014), as the intravenous plasma concentration-

time profile is not readily accessible. The same procedure 

was followed for the extended-release cinnarizine 

formulation, using data from the literature (Morrison et al., 

1979). In fig. 8, the plasma concentration-time plot of 

predicted and experimental values overlaps for 

domperidone, whereas the predicted curve for the 

optimized formulation of cinnarizine resembles the 

reported study (Kesharwani and Ibrahim, 2023). However, 

the predicted parameters, including Cmax (ng/ml), Tmax (h), 

AUC0-inf (ng-h/ml), and AUC0-t (ng-h/ml), were within the 

2-fold error range, as per specifications, which assures 

good predictive performance (Cho et al., 2022). The 

relative bioavailability of the CCD-generated formulations 

of cinnarizine (89%) and domperidone (81%) was within 

the acceptable range, i.e., 80-125% (Amini et al., 2020). 
 

CONCLUSION 
 

In this study, a neural network-based ANN model was 

successfully built, trained, and implemented to achieve the 

desired quality attributes of the bilayer tablet formulation 

with cinnarizine and domperidone as model drugs. The 

predicted formulation obtained by the trained ANN 

architecture was successfully cross-validated by the 

multivariate CCD approach. Based on in-silico PBPK 

studies, the oral bioavailability of the two drugs can be 

readily understood along with the specific inter-personal 

pharmacokinetic diversity without conducting in-vivo 

studies.  
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